Research Article
BibTex RIS Cite
Year 2024, Volume: 15 Issue: 3, 247 - 259, 26.10.2024
https://doi.org/10.21031/epod.1539694

Abstract

References

  • Abuzayed, A., & Al‐Khalifa, H. S. (2021). Bert for Arabic topic modeling: An experimental study on BERTopic technique. Procedia Computer Science, 189, 191-194. https://doi.org/10.1016/j.procs.2021.05.096
  • Aggarwal, E., & Nair, S. (2012). NLP token matching on database using binary search. International Journal of Computers & Technology, 3(1), 140-143. https://doi.org/10.24297/ijct.v3i1c.2766
  • Bent, M., Velazquez-Godinez, E., & Jong, F. (2021). Becoming an expert teacher: Assessing expertise growth in peer feedback video recordings by lexical analysis. Education Sciences, 11(11), 665. https://doi.org/10.3390/educsci11110665
  • Bianchi, F., Terragni, S., Hovy, D., Nozza, D., & Fersini, E. (2021). Cross-lingual Contextualized Topic Models with Zero-shot Learning. In P. Merlo, J. Tiedemann, & R. Tsarfaty (Eds.), Proceedings of the 16th conference of the European chapter of the association for computational linguistics: Main volume,1676–1683. doi:10.18653/v1/2021.eacl-main.143
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3(1), 993–1022.
  • Boussaadi, S., Aliane, H., & Abdeldjalil, O. (2023). Using an explicit query and a topic model for scientific article recommendation. Education and Information Technologies, 28(12), 15657-15670. https://doi.org/10.1007/s10639-023-11817-2
  • Casillano, N. F. B. (2022). Discovering sentiments and latent themes in the views of faculty members towards the shift from conventional to online teaching using VADER and latent dirichlet allocation. International Journal of Information and Education Technology, 12(4), 290-298. https://doi.org/10.18178/ijiet.2022.12.4.1617
  • Çavuşoğlu, D., Kıncal, R. Y., & Kartal, O. Y. (2023). Systematic review of research conducted on the techno-pedagogical content knowledge of English teachers. Journal of Family Counseling and Education, 8(2), 170-192. https://doi.org/10.32568/jfce.1269034
  • Chang, D. F., & Berk, A. (2009). Making cross-racial therapy work: A phenomenological study of clients’ experiences of cross-racial therapy. Journal of Counseling Psychology, 56(4), 521-536. https://doi.org/10.1037/a0016905
  • Cheddak, A. (2024). BERTopic for enhanced idea management and topic generation in brainstorming sessions. Information, 15(6), 365. https://doi.org/10.3390/info15060365
  • Chowdhary, K. R. (2020). Natural language processing. Fundamentals of Artificial Intelligence, 603-649. https://doi.org/10.1007/978-81-322-3972-7_19
  • Chwalisz, K., Wiersma, N., & Stark-Wroblewski, K. (1996). A quasi-qualitative investigation of strategies used in qualitative categorization. Journal of Counseling Psychology, 43(4), 502-509. https://doi.org/10.1037/0022-0167.43.4.502
  • Cowan, T., Rodriguez, Z., Granrud, O., Masucci, M., Docherty, N., & Cohen, A. (2022). Talking about health: A topic analysis of narratives from individuals with schizophrenia and other serious mental illnesses. Behavioral Sciences, 12(8), 286. https://doi.org/10.3390/bs12080286
  • Dinçer, P., & Yavuz, H. (2023). Behind the screen: a case study on the perspectives of freshman EFL students and their instructors. Education and Information Technologies, 28(9), 11881-11920. https://doi.org/10.1007/s10639-023-11661-4
  • Ding, Q., Ding, D., Wang, Y., Guan, C., & Ding, B. (2023). Unraveling the landscape of large language models: A systematic review and future perspectives. Journal of Electronic Business & Digital Economics, 3, 3-19. https://doi.org/10.1108/jebde-08-2023-0015
  • Egger, R., & Yu, J. (2022). A topic modeling comparison between LDA, NMF, Top2Vec, and BERTopic to demystify twitter posts. Frontiers in Sociology, 7. https://doi.org/10.3389/fsoc.2022.886498
  • Ekinci, E., & Omurca, S. (2019). Concept-LDA: Incorporating Babelfy into LDA for aspect extraction. Journal of Information Science, 46(3), 406-418. https://doi.org/10.1177/0165551519845854
  • Foster, A. (2016). An extension of standard latent dirichlet allocation to multiple corpora. SIAM Undergraduate Research Online, 9. https://doi.org/10.1137/15s014599
  • Foster, C., & Inglis, M. (2018). Mathematics teacher professional journals: What topics appear and how has this changed over time?. International Journal of Science and Mathematics Education, 17(8), 1627-1648. https://doi.org/10.1007/s10763-018-9937-4
  • Grootendorst, M. (2022). BERTOPIC: Neural topic modeling with a class-based TF-IDF procedure. https://doi.org/10.48550/arxiv.2203.05794
  • Hamelberg, K., de Ruyter, K., van Dolen, W., & Konuş, U. (2024). Finding the right voice: How CEO communication on the Russia–Ukraine war drives public engagement and digital activism. Journal of Public Policy & Marketing. https://doi.org/10.1177/07439156241230910
  • Hujala, M., Knutas, A., Hynninen, T., & Arminen, H. (2020). Improving the quality of teaching by utilizing written student feedback: A streamlined process. Computers & Education, 157, 103965. https://doi.org/10.1016/j.compedu.2020.103965
  • Im, Y., Park, J., Kim, M., & Park, K. (2019). Comparative study on perceived trust of topic modeling based on affective level of educational text. Applied Sciences, 9(21), 4565. https://doi.org/10.3390/app9214565
  • Kiener, F., Gnehm, A., & Backes‐Gellner, U. (2023). Noncognitive skills in training curricula and nonlinear wage returns. International Journal of Manpower, 44(4), 772-788. https://doi.org/10.1108/ijm-03-2022-0119
  • Kousis, A. (2023). Investigating the key aspects of a smart city through topic modeling and thematic analysis. Future Internet, 16(1), 3. https://doi.org/10.3390/fi16010003
  • Kukushkin K., Ryabov Y., & Borovkov A. (2022). Digital Twins: A Systematic Literature Review Based on Data Analysis and Topic Modeling. Data, 7(12):173. https://doi.org/10.3390/data7120173
  • Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Suárez‐Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA publications and communications board task force report. American Psychologist, 73(1), 26-46. https://doi.org/10.1037/amp0000151
  • Maryanto, M. (2024). Hybrid model for extractive single document summarization: Utilizing bertopic and bert model. IAES International Journal of Artificial Intelligence (Ij-Ai), 13(2), 1723. https://doi.org/10.11591/ijai.v13.i2.pp1723-1731
  • McInnes, L., Healy, J. J., & Astels, S. (2017). HDBSCAN: Hierarchical density based clustering. The Journal of Open Source Software, 2(11), 205. https://doi.org/10.21105/joss.00205
  • McInnes, L., Healy, J., Saul, N., & Grossberger, L. (2018). UMAP: Uniform manifold approximation and projection. The Journal of Open Source Software, 3(29), 861.
  • Mendonça, M. (2024). Topic extraction: BERTopic’s insight into the 117th congress’s twitterverse. Informatics, 11(1), 8. https://doi.org/10.3390/informatics11010008
  • Mosia, M. (2024). Data-driven insights into non-purchasing behaviours through latent dirichlet allocation: Analysing study material acquisition among university students. Journal of Culture and Values in Education, 7(1), 72-82. https://doi.org/10.46303/jcve.2024.5
  • Ogunleye, B., Maswera, T., Hirsch, L., Gaudoin, J., & Brunsdon, T. (2023). Comparison of topic modelling approaches in the banking context. Applied Sciences, 13(2), 797. https://doi.org/10.3390/app13020797
  • Özyurt, Ö. (2022). Empirical research of emerging trends and patterns across the flipped classroom studies using topic modeling. Education and Information Technologies, 28(4), 4335-4362. https://doi.org/10.1007/s10639-022-11396-8
  • Pérez-Paredes, P., Guillamón, C. O., & Jiménez, P. A. (2018). Language teachers’ perceptions on the use of oer language processing technologies in mall. Computer Assisted Language Learning, 31(5-6), 522-545. https://doi.org/10.1080/09588221.2017.1418754
  • Polkinghorne, D. E. (1994). Reaction to special section on qualitative research in counseling process and outcome.. Journal of Counseling Psychology, 41(4), 510-512. https://doi.org/10.1037//0022-0167.41.4.510
  • Qiang, J., Chen, P., Wang, T., & Wu, X. (2017). Topic modeling over short texts by incorporating word embeddings. Advances in Knowledge Discovery and Data Mining, 363-374. https://doi.org/10.1007/978-3-319-57529-2_29
  • Ramamoorthy, T., Kulothungan, V., & Mappillairaju, B. (2024). Topic modeling and social network analysis approach to explore diabetes discourse on twitter in India. Frontiers in Artificial Intelligence, 7. https://doi.org/10.3389/frai.2024.1329185
  • Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using siamese BERT-Networks. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Retrieved from http://arxiv.org/abs/1908.10084
  • Reimers, N., & Gurevych, I. (2019). Sentencebert: Sentence embeddings using siamese BERTnetworks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Procesessing Association for Computational Linguistics.
  • Rossman, G., & Rallis, S. F. (2017). An introduction to qualitative research: Learning in the field. SAGE Publications. https://doi.org/10.4135/9781071802694
  • Scarpino, I., Zucco, C., Vallelunga, R., Luzza, F., & Cannataro, M. (2022). Investigating topic modeling techniques to extract meaningful insights in italian long covid narration. Biotech, 11(3), 41. https://doi.org/10.3390/biotech11030041
  • Shin, M., Ok, M. W., Choo, S., Hossain, G., Bryant, D. P., & Kang, E. (2023). A content analysis of research on technology use for teaching mathematics to students with disabilities: Word networks and topic modeling. International Journal of STEM Education, 10(1). https://doi.org/10.1186/s40594-023-00414-x
  • Soysal, Y., & Baltaru, R. (2021). University as the producer of knowledge, and economic and societal value: The 20th and twenty-first century transformations of the UK higher education system. European Journal of Higher Education, 11(3), 312-328. https://doi.org/10.1080/21568235.2021.1944250
  • Sudigyo, D., Hidayat, A. A., Nirwantono, R., Rahutomo, R., Trinugroho, J. P., & Pardamean, B. (2023). Literature study of stunting supplementation in Indonesian utilizing text mining approach. Procedia Computer Science, 216, 722-729. https://doi.org/10.1016/j.procs.2022.12.189
  • Sutton, J., & Austin, Z. (2015). Qualitative research: Data collection, analysis, and management. The Canadian Journal of Hospital Pharmacy, 68(3). https://doi.org/10.4212/cjhp.v68i3.1456
  • Tufféry, S. (2022). Deep learning: From big data to artificial intelligence with r. John Wiley & Sons Ltd. https://doi.org/10.1002/9781119845041.ch9
  • Wang, L., Chen, P., Chen, L., & Mou, J. (2021). Ship AIS trajectory clustering: An HDBSCAN-based approach. Journal of Marine Science and Engineering, 9(6), 566. https://doi.org/10.3390/jmse9060566
  • Wang, Y., & Heppner, P. P. (2011). A qualitative study of childhood sexual abuse survivors in Taiwan: Toward a transactional and ecological model of coping. Journal of Counseling Psychology, 58(3), 393-409. https://doi.org/10.1037/a0023522
  • Watanabe, G., Conching, A., Nishioka, S. T., Steed, T., Matsunaga, M., Lozanoff, S.,…& Noh, T. (2023). Themes in neuronavigation research: A machine learning topic analysis. World Neurosurgery: X, 18, 100182. https://doi.org/10.1016/j.wnsx.2023.100182
  • Watanabe, K., & Baturo, A. (2024). Seeded Sequential LDA: A Semi-Supervised Algorithm for Topic-Specific Analysis of Sentences. Social Science Computer Review, 42(1), 224-248. https://doi.org/10.1177/08944393231178605
  • Weisser, C., Gerloff, C., Thielmann, A., Python, A., Reuter, A., Kneib, T., … & Säfken, B. (2022). Pseudo-document simulation for comparing LDA, GSDMM and GPM topic models on short and sparse text using twitter data. Computational Statistics, 38(2), 647-674. https://doi.org/10.1007/s00180-022-01246-z
  • Wildemann, S. (2023). Bridging qualitative data silos: The potential of reusing codings through machine learning based cross-study code linking. Social Science Computer Review, 42(3), 760-776. https://doi.org/10.1177/08944393231215459
  • Wilson, J., Zhang, S., Palermo, C., Cordero, T. C., Zhang, F., Myers, M. C., … & Coles, J. (2024). A latent dirichlet allocation approach to understanding students’ perceptions of automated writing evaluation. Computers and Education Open, 6, 100194. https://doi.org/10.1016/j.caeo.2024.100194
  • Yang, L., Shi, J., Zhao, C., & Zhang, C. (2023). Generalizing factors of covid-19 vaccine attitudes in different regions: A summary generation and topic modeling approach. Digital Health, 9. https://doi.org/10.1177/20552076231188852
  • Yin, B., & Yuan, C. (2022). Detecting latent topics and trends in blended learning using LDA topic modeling. Education and Information Technologies, 27(9), 12689-12712. https://doi.org/10.1007/s10639-022-11118-0
  • Zhang, D., Lee, K., & Lee, I. (2018). Hierarchical trajectory clustering for spatio-temporal periodic pattern mining. Expert Systems with Applications, 92, 1-11. https://doi.org/10.1016/j.eswa.2017.09.040

Discovering Hidden Patterns: Applying Topic Modeling in Qualitative Research

Year 2024, Volume: 15 Issue: 3, 247 - 259, 26.10.2024
https://doi.org/10.21031/epod.1539694

Abstract

In qualitative studies, researchers must devote a significant amount of time and effort to extracting meaningful themes from huge sets of texts and examining the links between themes, which are frequently done manually. The availability of natural language models has enabled the application of a wide range of techniques for automatically detecting hierarchy, linkages, and latent themes in texts. This paper aims to investigate the coherence of the topics acquired from the analysis with the predefined themes, the hierarchy between the topics, the similarity between the topics and the proximity-distance between the topics by means of the topic model based on BERTopic using unstructured qualitative data. The qualitative data for this study was gathered from 106 students engaged in a university-run pedagogical formation certificate program. In BERTopic procedure, paraphrase-multilingual-MiniLM-L12-v2 model was used as sentence transformer model, UMAP was used as dimension reduction method and HDBSCAN algorithm was used as clustering method. It is found that BERTopic successfully identified six topics corresponding to the six predicted themes in unstructured texts. Moreover 74% of the texts containing some themes could be classified accurately. The algorithm was also able to successfully identify which topics were similar and which topics differed significantly from the others. It was concluded that BERTopic is a procedure that can identify themes that researchers do not notice depending on the density of the data in qualitative data analysis and has the potential to enable qualitative research to reach more detailed findings.

References

  • Abuzayed, A., & Al‐Khalifa, H. S. (2021). Bert for Arabic topic modeling: An experimental study on BERTopic technique. Procedia Computer Science, 189, 191-194. https://doi.org/10.1016/j.procs.2021.05.096
  • Aggarwal, E., & Nair, S. (2012). NLP token matching on database using binary search. International Journal of Computers & Technology, 3(1), 140-143. https://doi.org/10.24297/ijct.v3i1c.2766
  • Bent, M., Velazquez-Godinez, E., & Jong, F. (2021). Becoming an expert teacher: Assessing expertise growth in peer feedback video recordings by lexical analysis. Education Sciences, 11(11), 665. https://doi.org/10.3390/educsci11110665
  • Bianchi, F., Terragni, S., Hovy, D., Nozza, D., & Fersini, E. (2021). Cross-lingual Contextualized Topic Models with Zero-shot Learning. In P. Merlo, J. Tiedemann, & R. Tsarfaty (Eds.), Proceedings of the 16th conference of the European chapter of the association for computational linguistics: Main volume,1676–1683. doi:10.18653/v1/2021.eacl-main.143
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3(1), 993–1022.
  • Boussaadi, S., Aliane, H., & Abdeldjalil, O. (2023). Using an explicit query and a topic model for scientific article recommendation. Education and Information Technologies, 28(12), 15657-15670. https://doi.org/10.1007/s10639-023-11817-2
  • Casillano, N. F. B. (2022). Discovering sentiments and latent themes in the views of faculty members towards the shift from conventional to online teaching using VADER and latent dirichlet allocation. International Journal of Information and Education Technology, 12(4), 290-298. https://doi.org/10.18178/ijiet.2022.12.4.1617
  • Çavuşoğlu, D., Kıncal, R. Y., & Kartal, O. Y. (2023). Systematic review of research conducted on the techno-pedagogical content knowledge of English teachers. Journal of Family Counseling and Education, 8(2), 170-192. https://doi.org/10.32568/jfce.1269034
  • Chang, D. F., & Berk, A. (2009). Making cross-racial therapy work: A phenomenological study of clients’ experiences of cross-racial therapy. Journal of Counseling Psychology, 56(4), 521-536. https://doi.org/10.1037/a0016905
  • Cheddak, A. (2024). BERTopic for enhanced idea management and topic generation in brainstorming sessions. Information, 15(6), 365. https://doi.org/10.3390/info15060365
  • Chowdhary, K. R. (2020). Natural language processing. Fundamentals of Artificial Intelligence, 603-649. https://doi.org/10.1007/978-81-322-3972-7_19
  • Chwalisz, K., Wiersma, N., & Stark-Wroblewski, K. (1996). A quasi-qualitative investigation of strategies used in qualitative categorization. Journal of Counseling Psychology, 43(4), 502-509. https://doi.org/10.1037/0022-0167.43.4.502
  • Cowan, T., Rodriguez, Z., Granrud, O., Masucci, M., Docherty, N., & Cohen, A. (2022). Talking about health: A topic analysis of narratives from individuals with schizophrenia and other serious mental illnesses. Behavioral Sciences, 12(8), 286. https://doi.org/10.3390/bs12080286
  • Dinçer, P., & Yavuz, H. (2023). Behind the screen: a case study on the perspectives of freshman EFL students and their instructors. Education and Information Technologies, 28(9), 11881-11920. https://doi.org/10.1007/s10639-023-11661-4
  • Ding, Q., Ding, D., Wang, Y., Guan, C., & Ding, B. (2023). Unraveling the landscape of large language models: A systematic review and future perspectives. Journal of Electronic Business & Digital Economics, 3, 3-19. https://doi.org/10.1108/jebde-08-2023-0015
  • Egger, R., & Yu, J. (2022). A topic modeling comparison between LDA, NMF, Top2Vec, and BERTopic to demystify twitter posts. Frontiers in Sociology, 7. https://doi.org/10.3389/fsoc.2022.886498
  • Ekinci, E., & Omurca, S. (2019). Concept-LDA: Incorporating Babelfy into LDA for aspect extraction. Journal of Information Science, 46(3), 406-418. https://doi.org/10.1177/0165551519845854
  • Foster, A. (2016). An extension of standard latent dirichlet allocation to multiple corpora. SIAM Undergraduate Research Online, 9. https://doi.org/10.1137/15s014599
  • Foster, C., & Inglis, M. (2018). Mathematics teacher professional journals: What topics appear and how has this changed over time?. International Journal of Science and Mathematics Education, 17(8), 1627-1648. https://doi.org/10.1007/s10763-018-9937-4
  • Grootendorst, M. (2022). BERTOPIC: Neural topic modeling with a class-based TF-IDF procedure. https://doi.org/10.48550/arxiv.2203.05794
  • Hamelberg, K., de Ruyter, K., van Dolen, W., & Konuş, U. (2024). Finding the right voice: How CEO communication on the Russia–Ukraine war drives public engagement and digital activism. Journal of Public Policy & Marketing. https://doi.org/10.1177/07439156241230910
  • Hujala, M., Knutas, A., Hynninen, T., & Arminen, H. (2020). Improving the quality of teaching by utilizing written student feedback: A streamlined process. Computers & Education, 157, 103965. https://doi.org/10.1016/j.compedu.2020.103965
  • Im, Y., Park, J., Kim, M., & Park, K. (2019). Comparative study on perceived trust of topic modeling based on affective level of educational text. Applied Sciences, 9(21), 4565. https://doi.org/10.3390/app9214565
  • Kiener, F., Gnehm, A., & Backes‐Gellner, U. (2023). Noncognitive skills in training curricula and nonlinear wage returns. International Journal of Manpower, 44(4), 772-788. https://doi.org/10.1108/ijm-03-2022-0119
  • Kousis, A. (2023). Investigating the key aspects of a smart city through topic modeling and thematic analysis. Future Internet, 16(1), 3. https://doi.org/10.3390/fi16010003
  • Kukushkin K., Ryabov Y., & Borovkov A. (2022). Digital Twins: A Systematic Literature Review Based on Data Analysis and Topic Modeling. Data, 7(12):173. https://doi.org/10.3390/data7120173
  • Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Suárez‐Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA publications and communications board task force report. American Psychologist, 73(1), 26-46. https://doi.org/10.1037/amp0000151
  • Maryanto, M. (2024). Hybrid model for extractive single document summarization: Utilizing bertopic and bert model. IAES International Journal of Artificial Intelligence (Ij-Ai), 13(2), 1723. https://doi.org/10.11591/ijai.v13.i2.pp1723-1731
  • McInnes, L., Healy, J. J., & Astels, S. (2017). HDBSCAN: Hierarchical density based clustering. The Journal of Open Source Software, 2(11), 205. https://doi.org/10.21105/joss.00205
  • McInnes, L., Healy, J., Saul, N., & Grossberger, L. (2018). UMAP: Uniform manifold approximation and projection. The Journal of Open Source Software, 3(29), 861.
  • Mendonça, M. (2024). Topic extraction: BERTopic’s insight into the 117th congress’s twitterverse. Informatics, 11(1), 8. https://doi.org/10.3390/informatics11010008
  • Mosia, M. (2024). Data-driven insights into non-purchasing behaviours through latent dirichlet allocation: Analysing study material acquisition among university students. Journal of Culture and Values in Education, 7(1), 72-82. https://doi.org/10.46303/jcve.2024.5
  • Ogunleye, B., Maswera, T., Hirsch, L., Gaudoin, J., & Brunsdon, T. (2023). Comparison of topic modelling approaches in the banking context. Applied Sciences, 13(2), 797. https://doi.org/10.3390/app13020797
  • Özyurt, Ö. (2022). Empirical research of emerging trends and patterns across the flipped classroom studies using topic modeling. Education and Information Technologies, 28(4), 4335-4362. https://doi.org/10.1007/s10639-022-11396-8
  • Pérez-Paredes, P., Guillamón, C. O., & Jiménez, P. A. (2018). Language teachers’ perceptions on the use of oer language processing technologies in mall. Computer Assisted Language Learning, 31(5-6), 522-545. https://doi.org/10.1080/09588221.2017.1418754
  • Polkinghorne, D. E. (1994). Reaction to special section on qualitative research in counseling process and outcome.. Journal of Counseling Psychology, 41(4), 510-512. https://doi.org/10.1037//0022-0167.41.4.510
  • Qiang, J., Chen, P., Wang, T., & Wu, X. (2017). Topic modeling over short texts by incorporating word embeddings. Advances in Knowledge Discovery and Data Mining, 363-374. https://doi.org/10.1007/978-3-319-57529-2_29
  • Ramamoorthy, T., Kulothungan, V., & Mappillairaju, B. (2024). Topic modeling and social network analysis approach to explore diabetes discourse on twitter in India. Frontiers in Artificial Intelligence, 7. https://doi.org/10.3389/frai.2024.1329185
  • Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using siamese BERT-Networks. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Retrieved from http://arxiv.org/abs/1908.10084
  • Reimers, N., & Gurevych, I. (2019). Sentencebert: Sentence embeddings using siamese BERTnetworks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Procesessing Association for Computational Linguistics.
  • Rossman, G., & Rallis, S. F. (2017). An introduction to qualitative research: Learning in the field. SAGE Publications. https://doi.org/10.4135/9781071802694
  • Scarpino, I., Zucco, C., Vallelunga, R., Luzza, F., & Cannataro, M. (2022). Investigating topic modeling techniques to extract meaningful insights in italian long covid narration. Biotech, 11(3), 41. https://doi.org/10.3390/biotech11030041
  • Shin, M., Ok, M. W., Choo, S., Hossain, G., Bryant, D. P., & Kang, E. (2023). A content analysis of research on technology use for teaching mathematics to students with disabilities: Word networks and topic modeling. International Journal of STEM Education, 10(1). https://doi.org/10.1186/s40594-023-00414-x
  • Soysal, Y., & Baltaru, R. (2021). University as the producer of knowledge, and economic and societal value: The 20th and twenty-first century transformations of the UK higher education system. European Journal of Higher Education, 11(3), 312-328. https://doi.org/10.1080/21568235.2021.1944250
  • Sudigyo, D., Hidayat, A. A., Nirwantono, R., Rahutomo, R., Trinugroho, J. P., & Pardamean, B. (2023). Literature study of stunting supplementation in Indonesian utilizing text mining approach. Procedia Computer Science, 216, 722-729. https://doi.org/10.1016/j.procs.2022.12.189
  • Sutton, J., & Austin, Z. (2015). Qualitative research: Data collection, analysis, and management. The Canadian Journal of Hospital Pharmacy, 68(3). https://doi.org/10.4212/cjhp.v68i3.1456
  • Tufféry, S. (2022). Deep learning: From big data to artificial intelligence with r. John Wiley & Sons Ltd. https://doi.org/10.1002/9781119845041.ch9
  • Wang, L., Chen, P., Chen, L., & Mou, J. (2021). Ship AIS trajectory clustering: An HDBSCAN-based approach. Journal of Marine Science and Engineering, 9(6), 566. https://doi.org/10.3390/jmse9060566
  • Wang, Y., & Heppner, P. P. (2011). A qualitative study of childhood sexual abuse survivors in Taiwan: Toward a transactional and ecological model of coping. Journal of Counseling Psychology, 58(3), 393-409. https://doi.org/10.1037/a0023522
  • Watanabe, G., Conching, A., Nishioka, S. T., Steed, T., Matsunaga, M., Lozanoff, S.,…& Noh, T. (2023). Themes in neuronavigation research: A machine learning topic analysis. World Neurosurgery: X, 18, 100182. https://doi.org/10.1016/j.wnsx.2023.100182
  • Watanabe, K., & Baturo, A. (2024). Seeded Sequential LDA: A Semi-Supervised Algorithm for Topic-Specific Analysis of Sentences. Social Science Computer Review, 42(1), 224-248. https://doi.org/10.1177/08944393231178605
  • Weisser, C., Gerloff, C., Thielmann, A., Python, A., Reuter, A., Kneib, T., … & Säfken, B. (2022). Pseudo-document simulation for comparing LDA, GSDMM and GPM topic models on short and sparse text using twitter data. Computational Statistics, 38(2), 647-674. https://doi.org/10.1007/s00180-022-01246-z
  • Wildemann, S. (2023). Bridging qualitative data silos: The potential of reusing codings through machine learning based cross-study code linking. Social Science Computer Review, 42(3), 760-776. https://doi.org/10.1177/08944393231215459
  • Wilson, J., Zhang, S., Palermo, C., Cordero, T. C., Zhang, F., Myers, M. C., … & Coles, J. (2024). A latent dirichlet allocation approach to understanding students’ perceptions of automated writing evaluation. Computers and Education Open, 6, 100194. https://doi.org/10.1016/j.caeo.2024.100194
  • Yang, L., Shi, J., Zhao, C., & Zhang, C. (2023). Generalizing factors of covid-19 vaccine attitudes in different regions: A summary generation and topic modeling approach. Digital Health, 9. https://doi.org/10.1177/20552076231188852
  • Yin, B., & Yuan, C. (2022). Detecting latent topics and trends in blended learning using LDA topic modeling. Education and Information Technologies, 27(9), 12689-12712. https://doi.org/10.1007/s10639-022-11118-0
  • Zhang, D., Lee, K., & Lee, I. (2018). Hierarchical trajectory clustering for spatio-temporal periodic pattern mining. Expert Systems with Applications, 92, 1-11. https://doi.org/10.1016/j.eswa.2017.09.040
There are 57 citations in total.

Details

Primary Language English
Subjects Testing, Assessment and Psychometrics (Other)
Journal Section Articles
Authors

Osman Tat 0000-0003-2950-9647

Izzettin Aydogan 0000-0002-5908-1285

Publication Date October 26, 2024
Submission Date August 27, 2024
Acceptance Date October 17, 2024
Published in Issue Year 2024 Volume: 15 Issue: 3

Cite

APA Tat, O., & Aydogan, I. (2024). Discovering Hidden Patterns: Applying Topic Modeling in Qualitative Research. Journal of Measurement and Evaluation in Education and Psychology, 15(3), 247-259. https://doi.org/10.21031/epod.1539694