Research Article
BibTex RIS Cite

Doğum Sonrası Gelişim Dönemlerindeki Sıçan Uterus Dokusunda Kök Hücre Varlığının Araştırılması

Year 2023, , 206 - 213, 04.12.2023
https://doi.org/10.32707/ercivet.1388996

Abstract

Uterus dokusu yenilenme, farklılaşma ve dökülmenin görüldüğü yüksek proliferasyon kapasitesine sahip olan bir organdır. Bu dokuda yenilenme her ay olmasına rağmen, yenilenmenin kaynağı halen belirlenememiştir. Kök hücrelerin endometriyumun rejenerasyonunu sağlayabilen bir kaynak olduğu ve bu hücrelerin eksprese ettiği belirteçler ile ilgili çalışmalar yapılmaktadır. Bu çalışmanın amacı, uterusun temel popülasyonu tarafından eksprese edilen CD9 ve CD13'ün ve hematopoetik kök hücrelerin belirteci olan CD34'ün doğum sonrası gelişim sürecinin çeşitli aşamalarında immünreaktivitesini incelemekti. Bu çalışmada 42 adet dişi Wistar albino rat altı gruba ayrıldı; Grup I yenidoğan (2 günlük), Grup II pubertal (38 günlük) ve geri kalan gruplar, Grup III: fertil grup (12 hafta), sıçanlarda östrus döngüsünün evrelerini belirleyerek a) proöstrus, b) östrus, c) metestrus, d) diestrus. Deney sonunda, sıçanlardan alınan uterus dokularında CD9, CD13 ve CD34 ekspresyonları araştırıldı. 38 gün ve 12 haftalık postnatal gruplarda, miyometriyumun yanındaki endometrium stromasında CD34 eksprese eden hücreler mevcutken, postnatal 2 günlük grupta böyle hücreler bulunmamaktaydı. CD9 ekspresyonun da uterus epitelinde 2 günlük grup dışındaki tüm gruplarda gözlendi. Endometriyum stromasında eksprese edilen CD13 ise 2 günlük ve 38 günlük sıçanlarda zayıf olmasına rağmen, 12 haftalık sıçanlarda belirgin CD13 ekspresyonu olduğu belirlendi. Uterus endometriyumunun puberte ve erişkin dönemlerde, kemik iliği kaynaklı kök hücrelerin ve uterus kaynaklı epitelyal ve stromal hücrelerin katkısı ile yenilenebileceği düşünülmüştür.

References

  • Baran M, Yay A, Onder GO, Tan FC, Yalcin B, Balcioglu E, Yıldız OG. Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats. Int J Radiat Biol 2022; 98(9): 1473-83.
  • Branham WS, Sheehan DM, Zehr DR, Ridlon E, Nel-son CJ. The postnatal ontogeny of rat uterine glands and age-related effects of 17β-estradiol. Endocrinology 1985; 117: 2229-37.
  • Brody JR, Cunha GR. Histologic, morphometric, and immunocytochemical analysis of myometrial de-velopment in rats and mice: I. Normal develop-ment. Am J Anat 1989; 186: 1-20.
  • Bruscia EM, Ziegler EC, Price JE, Weiner S, Egan ME, Krause DS. Engraftment of donor-derived epithelial cells in multiple organs following bone marrow transplantation into newborn mice. Stem Cells 2006; 24: 2299-308.
  • Cervello JA, Martınez-Conejero JA, Horcajadas JA, Pellicer A, Simon C. Identification, characteriza-tion and co-localization of label-retaining cell pop-ulation in mouse endometrium with typical undif-ferentiated markers. Hum Reprod 2007; 22: 45-51.
  • Chan RWS and Gargett CE. Identification of label-retaining cells in mouse endometrium. Stem Cells 2006; 24: 1529-38.
  • Chan RWS, Schwab KE and Gargett CE. Clonogen-icity of human endometrial epithelial and stromal cells. Biol Reprod 2004; 70: 1738-50.
  • Cho NH, Park YK, Kim YT, Yang H, Kim SK. Lifetime expression of stem cell markers in the uterine endometrium. Fertil Steril 2004; 81: 403-7.
  • Civin CI, Strauss LC, Fackler MJ, Trischmann TM, Wiley JM, Loken MR. Positive stem cell selection-basic science. Prog Clin Biol Res 1990; 333:387-91.
  • Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endome-triosis. Stem Cells 2007; 25: 2082-6.
  • Gargett CE, Chan RW, Schwab KE. Endometrial stem cells. Curr Opin Obstet Gynecol 2007; 19: 377-83.
  • Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, Spencer TE. Developmental biol-ogy of uterine glands. Biol Reprod 2001; (5):1311-23.
  • Jabbour HN, Kelly RW, Fraser HM, Critchley HOD. Endocrine regulation of menstruation. Endocr Rev 2006; 27: 17-46.
  • Justyna F. Cellular and molecular mechanisms regu-lating postnatal development of the uterus. Wash-ington State University Animal Scinces, USA 2013.
  • Kaitu’u-Lino TJ, Ye L, and Gargett CE. Reepitheliali-zation of the uterine surface arises from endome-trial glands: evidence from a functional mouse model of breakdown and repair. Endocrinology 2010; 151: 3386-95.
  • Kato K, Yoshimoto M, Kato K, Adachi S, Yamayoshi A, Arima T, Asanoma K, Kyo S, Nakahata T, Wake N. Characterization of side population cells in human normal endometrium. Hum Reprod 2007; 22: 1214-23.
  • Kato K. Stem cells in human normal endometrium and endometrial cancer cells: Characterization of side population cells. Kaohsiung J Med Sci 2012; 28: 63-71.
  • Kyo S, Maida Y, Inoue M. Stem cells in endometrium and endometrial cancer: Accumulating evidence and unresolved questions. Cancer Letters 2011; 308: 123-33.
  • Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashi-ma T, Kajitani T, Arase T, Oda H, Uchida H, Asa-da H, Ito M, Yoshimura Y, Maruyama T, Okano H. Stem cell-like properties of the endometrial side population: Implication in endometrial regenera-tion. PLoS ONE 2010; 5: 1-8.
  • Mints M, Jansson M, Sadeghi B, Westgren M, Uzunel M, Hassan M, Palmblad J. Endometrial endotheli-al cells are derived from donor stem cells in a bone marrow transplant recipient. Hum Reprod 2008; 23: 139-43.
  • Onder GO, Balcioglu E, Baran M, Ceyhan A, Cengiz O, Suna PA, Yıldız OG, Yay A. The different dos-es of radiation therapy-induced damage to the ovarian environment in rats. Int J Radiat Biol 2021; 97(3): 367-75.
  • Padykula HA. Regeneration in the primate uterus: The role of stem cells. Ann NY Acad Sci 1991; 622: 47-56.
  • Park KR, Inoue T, Ueda M, Hirano T, Higuchi T, Maeda M, Konishi I, Fujiwara H, Fujii S. CD9 is expressed on human endometrial epithelial cells in association with integrins α6, α3 and β1. Mol Hum Reprod 2000; 6: 252-7.
  • Sato T, Fukazawa Y, Kojima H, Enari M, Iguchi T, Ohta Y. Apoptotic cell death during the estrous cycle in the rat uterus and vagina. Anat Rec 1997; 248: 76-83.
  • Seli E, Senturk L, Bahtiyar OM, Kayisli UA, Arici A. Expression of aminopeptidase N in human endo-metrium and regulation of its activity by estrogen. Fertil Steril 2001; 75: 1172-6.
  • Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipient. JAMA 2004; 292: 81-5.
  • Teixeira J, Rueda BR, Pru JK. Uterine stem cells. Stem Book, USA, 2008: 1-17.
  • Zhang WB, Cheng MJ, Huang YT, Jiang W, Cong Q, Zheng YF, Xu CJ. A study in vitro on differentia-tion of bone marrow mesenchymal stem cells into endometrial epithelial cells in mice. EJOG 2012; 160: 185-90.

Investigation of the Presence of Stem Cells in Rat Uterus Tissue in Postnatal Development Periods

Year 2023, , 206 - 213, 04.12.2023
https://doi.org/10.32707/ercivet.1388996

Abstract

Uterine tissue is an organ with a high proliferation capacity where regeneration, differentiation and shedding
are seen. Although this tissue is regenerated every month, the source of it hasn’t been determined yet. Studies are
carried out on stem cells being a source that can provide regeneration of the endometrium and the markers expressed
by these cells. The purpose of this study was to examine the immunreactivity of CD9 and CD13 expressed by essential
population of uterus and CD34, marker of hematopoietic stem cells, at various stages of the postnatal developing pro-
cess. In this study, was used 42 female Wistar-albino rats split into six groups; Group I; newborn (2-days), Group II;
pubertal (38-days), and Group III: fertile group (12 weeks), by identifying the stages of the estrous cycle in rats a) pro-
estrus, b) estrus, c) metestrus, d) diestrus. The expression of CD9, CD13, and CD34 in uterine tissues excised from
rats was investigated. In the groups of 38-days and 12-weeks, CD34-expressing cells were present in the stroma of the
endometrium next to the myometrium, but such cells were absent in the 2-days group. All groups' uterine epithelium
displayed CD9 expression, except for group 2-days. Endometrial stromal cells that expressed CD13 showed only little
immureactivity in groups 2 and 38-days, while CD13 expression is noticeable in group 12-weeks. It was thought that
the uterine endometrium could be regenerated in puberty and adulthood with the contribution of bone marrow-derived
stem cells and uterine-derived epithelial and stromal cells.

References

  • Baran M, Yay A, Onder GO, Tan FC, Yalcin B, Balcioglu E, Yıldız OG. Hepatotoxicity and renal toxicity induced by radiation and the protective effect of quercetin in male albino rats. Int J Radiat Biol 2022; 98(9): 1473-83.
  • Branham WS, Sheehan DM, Zehr DR, Ridlon E, Nel-son CJ. The postnatal ontogeny of rat uterine glands and age-related effects of 17β-estradiol. Endocrinology 1985; 117: 2229-37.
  • Brody JR, Cunha GR. Histologic, morphometric, and immunocytochemical analysis of myometrial de-velopment in rats and mice: I. Normal develop-ment. Am J Anat 1989; 186: 1-20.
  • Bruscia EM, Ziegler EC, Price JE, Weiner S, Egan ME, Krause DS. Engraftment of donor-derived epithelial cells in multiple organs following bone marrow transplantation into newborn mice. Stem Cells 2006; 24: 2299-308.
  • Cervello JA, Martınez-Conejero JA, Horcajadas JA, Pellicer A, Simon C. Identification, characteriza-tion and co-localization of label-retaining cell pop-ulation in mouse endometrium with typical undif-ferentiated markers. Hum Reprod 2007; 22: 45-51.
  • Chan RWS and Gargett CE. Identification of label-retaining cells in mouse endometrium. Stem Cells 2006; 24: 1529-38.
  • Chan RWS, Schwab KE and Gargett CE. Clonogen-icity of human endometrial epithelial and stromal cells. Biol Reprod 2004; 70: 1738-50.
  • Cho NH, Park YK, Kim YT, Yang H, Kim SK. Lifetime expression of stem cell markers in the uterine endometrium. Fertil Steril 2004; 81: 403-7.
  • Civin CI, Strauss LC, Fackler MJ, Trischmann TM, Wiley JM, Loken MR. Positive stem cell selection-basic science. Prog Clin Biol Res 1990; 333:387-91.
  • Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endome-triosis. Stem Cells 2007; 25: 2082-6.
  • Gargett CE, Chan RW, Schwab KE. Endometrial stem cells. Curr Opin Obstet Gynecol 2007; 19: 377-83.
  • Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, Spencer TE. Developmental biol-ogy of uterine glands. Biol Reprod 2001; (5):1311-23.
  • Jabbour HN, Kelly RW, Fraser HM, Critchley HOD. Endocrine regulation of menstruation. Endocr Rev 2006; 27: 17-46.
  • Justyna F. Cellular and molecular mechanisms regu-lating postnatal development of the uterus. Wash-ington State University Animal Scinces, USA 2013.
  • Kaitu’u-Lino TJ, Ye L, and Gargett CE. Reepitheliali-zation of the uterine surface arises from endome-trial glands: evidence from a functional mouse model of breakdown and repair. Endocrinology 2010; 151: 3386-95.
  • Kato K, Yoshimoto M, Kato K, Adachi S, Yamayoshi A, Arima T, Asanoma K, Kyo S, Nakahata T, Wake N. Characterization of side population cells in human normal endometrium. Hum Reprod 2007; 22: 1214-23.
  • Kato K. Stem cells in human normal endometrium and endometrial cancer cells: Characterization of side population cells. Kaohsiung J Med Sci 2012; 28: 63-71.
  • Kyo S, Maida Y, Inoue M. Stem cells in endometrium and endometrial cancer: Accumulating evidence and unresolved questions. Cancer Letters 2011; 308: 123-33.
  • Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashi-ma T, Kajitani T, Arase T, Oda H, Uchida H, Asa-da H, Ito M, Yoshimura Y, Maruyama T, Okano H. Stem cell-like properties of the endometrial side population: Implication in endometrial regenera-tion. PLoS ONE 2010; 5: 1-8.
  • Mints M, Jansson M, Sadeghi B, Westgren M, Uzunel M, Hassan M, Palmblad J. Endometrial endotheli-al cells are derived from donor stem cells in a bone marrow transplant recipient. Hum Reprod 2008; 23: 139-43.
  • Onder GO, Balcioglu E, Baran M, Ceyhan A, Cengiz O, Suna PA, Yıldız OG, Yay A. The different dos-es of radiation therapy-induced damage to the ovarian environment in rats. Int J Radiat Biol 2021; 97(3): 367-75.
  • Padykula HA. Regeneration in the primate uterus: The role of stem cells. Ann NY Acad Sci 1991; 622: 47-56.
  • Park KR, Inoue T, Ueda M, Hirano T, Higuchi T, Maeda M, Konishi I, Fujiwara H, Fujii S. CD9 is expressed on human endometrial epithelial cells in association with integrins α6, α3 and β1. Mol Hum Reprod 2000; 6: 252-7.
  • Sato T, Fukazawa Y, Kojima H, Enari M, Iguchi T, Ohta Y. Apoptotic cell death during the estrous cycle in the rat uterus and vagina. Anat Rec 1997; 248: 76-83.
  • Seli E, Senturk L, Bahtiyar OM, Kayisli UA, Arici A. Expression of aminopeptidase N in human endo-metrium and regulation of its activity by estrogen. Fertil Steril 2001; 75: 1172-6.
  • Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipient. JAMA 2004; 292: 81-5.
  • Teixeira J, Rueda BR, Pru JK. Uterine stem cells. Stem Book, USA, 2008: 1-17.
  • Zhang WB, Cheng MJ, Huang YT, Jiang W, Cong Q, Zheng YF, Xu CJ. A study in vitro on differentia-tion of bone marrow mesenchymal stem cells into endometrial epithelial cells in mice. EJOG 2012; 160: 185-90.
There are 28 citations in total.

Details

Primary Language English
Subjects Veterinary Histology and Embryology
Journal Section Articles
Authors

Betül Yalçın This is me 0000-0003-4433-9156

Arzu Hanım Yay 0000-0002-0541-8372

Saim Özdamar 0000-0003-4440-5360

Publication Date December 4, 2023
Submission Date March 28, 2023
Acceptance Date September 14, 2023
Published in Issue Year 2023

Cite

APA Yalçın, B., Yay, A. H., & Özdamar, S. (2023). Investigation of the Presence of Stem Cells in Rat Uterus Tissue in Postnatal Development Periods. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 20(3), 206-213. https://doi.org/10.32707/ercivet.1388996
AMA Yalçın B, Yay AH, Özdamar S. Investigation of the Presence of Stem Cells in Rat Uterus Tissue in Postnatal Development Periods. Erciyes Üniv Vet Fak Derg. December 2023;20(3):206-213. doi:10.32707/ercivet.1388996
Chicago Yalçın, Betül, Arzu Hanım Yay, and Saim Özdamar. “Investigation of the Presence of Stem Cells in Rat Uterus Tissue in Postnatal Development Periods”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 20, no. 3 (December 2023): 206-13. https://doi.org/10.32707/ercivet.1388996.
EndNote Yalçın B, Yay AH, Özdamar S (December 1, 2023) Investigation of the Presence of Stem Cells in Rat Uterus Tissue in Postnatal Development Periods. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 20 3 206–213.
IEEE B. Yalçın, A. H. Yay, and S. Özdamar, “Investigation of the Presence of Stem Cells in Rat Uterus Tissue in Postnatal Development Periods”, Erciyes Üniv Vet Fak Derg, vol. 20, no. 3, pp. 206–213, 2023, doi: 10.32707/ercivet.1388996.
ISNAD Yalçın, Betül et al. “Investigation of the Presence of Stem Cells in Rat Uterus Tissue in Postnatal Development Periods”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 20/3 (December 2023), 206-213. https://doi.org/10.32707/ercivet.1388996.
JAMA Yalçın B, Yay AH, Özdamar S. Investigation of the Presence of Stem Cells in Rat Uterus Tissue in Postnatal Development Periods. Erciyes Üniv Vet Fak Derg. 2023;20:206–213.
MLA Yalçın, Betül et al. “Investigation of the Presence of Stem Cells in Rat Uterus Tissue in Postnatal Development Periods”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, vol. 20, no. 3, 2023, pp. 206-13, doi:10.32707/ercivet.1388996.
Vancouver Yalçın B, Yay AH, Özdamar S. Investigation of the Presence of Stem Cells in Rat Uterus Tissue in Postnatal Development Periods. Erciyes Üniv Vet Fak Derg. 2023;20(3):206-13.