Research Article
BibTex RIS Cite

Multivariate Adaptive Regression Splines (Mars) Method For Unemployment in OECD Countries

Year 2020, Volume: 35 Issue: 3, 46 - 51, 04.01.2020

Abstract

References

  • [1] Gatti, D., Vaubourg, A.G. 2010. The Financial Determinants of Unemployment: do they interact with labor market institutions?. Wiliam Davidson Institute Working Paper, Vol.273.
  • [2] Gyekye, K.B., Kyei, K.A. 2011. Determinants of unemployment in Limpopo province in South Africa: exploratory studies. Journal of Emerging Trends in Economics and Management Sciences, 2(1), 54-61.
  • [3] Güriş, S., Yaman, B. 2018. OECD Ülkelerinde İşsizliği Etkileyen Faktörlerin Panel Veri Modelleri ile Analizi. Social Sciences Research Journal, C, 7, 136-146.
  • [4] Bayrak, R., Tatli, H. 2018. The Determinants of Youth Unemployment: A Panel Data Analysis of OECD Countries. The European Journal of Comparative Economics, 15(2), 231-248.
  • [5] Bruno, G.S., Choudhry Tanveer, M., Marelli, E., Signorelli, M.2017. The short-and long-run impacts of financial crises on youth unemployment in OECD countries. Applied Economics, 49(34), 3372-3394.
  • [6] Uzunkaya, S. Ş., Dinçer, H., Yüksel, S. 2019. ABD’nin Ekonomik Gelişmesinin Tarihsel Bir Analizi (1947-2017). MANAS Sosyal Araştırmalar Dergisi, 8(1/1), 215-228.
  • [7] Dinçer, H., Hacıoğlu Ü., Yüksel, S. 2017. Determining Influencing Factors of Currency Exchange Rate for Decision Making in Global Economcy using MARS Method. Chapter 13: Geopolitics and Strategic Management in the Global Economy, IGA Global.
  • [8] Bolder, J., Rubin, T. 2007. Optimization in a Simulation Setting: Use of Function Approximation in Debt Strategy Analysis. Bank of Canada Working Paper, 1-92.
  • [9] Yüksel, S., Zengin S., Kartal, M.T. 2016. Identifying the Macroeconomic Factors Influencing Credit Card Usage in Turkey by Using MARS Method. China-USA Business Review, 15(12), 611-615.
  • [10] Friedman, J.H. 1991. Multivariate adaptive regression splines. The annals of statistics, 19(1), 1-67.
  • [11] Lee, T.S., Chiu, C.C., Chou, Y.C., Lu, C.J.2006. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50(4), 1113-1130.
  • [12] Friedman, J., Hastie, T., Tibshirani, R. 2001. The elements of statistical learning. Vol. 1, No. 10, New York: Springer series in statistics.
  • [13] Salford Systems, 2001. TreeNet stochastic gradient boosting: An implementation of the MART methodology.
  • [14] Craven, P., Wahba, G. 1979. Estimating the correct degree of smoothing by the method of generalized cross-validation”, Numerische Mathematik, 31, 377-403.

Multivariate Adaptive Regression Splines (Mars) Method For Unemployment in OECD Countries

Year 2020, Volume: 35 Issue: 3, 46 - 51, 04.01.2020

Abstract

Unemployment is one of the most important macroeconomic problems in all countries and it is very important task for identification of the key determinants of it. Therefore, in recent years determining the factors affecting the unemployment is attracting the researcher. In this study, the factors affecting unemployment in Organization for Economic Co-operation and Development (OECD) countries were tried to be determined. In this context, data for the years 2000-2017 were analyzed by using MARS method. For each year, we estimated the Multivariate Adaptive Regression Splines (MARS) models and we tracked the effective predictors. According to our findings, the indicators Gross domestic product (Gdp), tax revenue rate, long term interest rate, saving rate and inflation usually have a significant impact on the unemployment rates. The annual growth rate of import, export and exchange rate do not influence the unemployment ratios. Besides these results, the industrial production, the industrial value added and current account balance are influential for a few years.

References

  • [1] Gatti, D., Vaubourg, A.G. 2010. The Financial Determinants of Unemployment: do they interact with labor market institutions?. Wiliam Davidson Institute Working Paper, Vol.273.
  • [2] Gyekye, K.B., Kyei, K.A. 2011. Determinants of unemployment in Limpopo province in South Africa: exploratory studies. Journal of Emerging Trends in Economics and Management Sciences, 2(1), 54-61.
  • [3] Güriş, S., Yaman, B. 2018. OECD Ülkelerinde İşsizliği Etkileyen Faktörlerin Panel Veri Modelleri ile Analizi. Social Sciences Research Journal, C, 7, 136-146.
  • [4] Bayrak, R., Tatli, H. 2018. The Determinants of Youth Unemployment: A Panel Data Analysis of OECD Countries. The European Journal of Comparative Economics, 15(2), 231-248.
  • [5] Bruno, G.S., Choudhry Tanveer, M., Marelli, E., Signorelli, M.2017. The short-and long-run impacts of financial crises on youth unemployment in OECD countries. Applied Economics, 49(34), 3372-3394.
  • [6] Uzunkaya, S. Ş., Dinçer, H., Yüksel, S. 2019. ABD’nin Ekonomik Gelişmesinin Tarihsel Bir Analizi (1947-2017). MANAS Sosyal Araştırmalar Dergisi, 8(1/1), 215-228.
  • [7] Dinçer, H., Hacıoğlu Ü., Yüksel, S. 2017. Determining Influencing Factors of Currency Exchange Rate for Decision Making in Global Economcy using MARS Method. Chapter 13: Geopolitics and Strategic Management in the Global Economy, IGA Global.
  • [8] Bolder, J., Rubin, T. 2007. Optimization in a Simulation Setting: Use of Function Approximation in Debt Strategy Analysis. Bank of Canada Working Paper, 1-92.
  • [9] Yüksel, S., Zengin S., Kartal, M.T. 2016. Identifying the Macroeconomic Factors Influencing Credit Card Usage in Turkey by Using MARS Method. China-USA Business Review, 15(12), 611-615.
  • [10] Friedman, J.H. 1991. Multivariate adaptive regression splines. The annals of statistics, 19(1), 1-67.
  • [11] Lee, T.S., Chiu, C.C., Chou, Y.C., Lu, C.J.2006. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50(4), 1113-1130.
  • [12] Friedman, J., Hastie, T., Tibshirani, R. 2001. The elements of statistical learning. Vol. 1, No. 10, New York: Springer series in statistics.
  • [13] Salford Systems, 2001. TreeNet stochastic gradient boosting: An implementation of the MART methodology.
  • [14] Craven, P., Wahba, G. 1979. Estimating the correct degree of smoothing by the method of generalized cross-validation”, Numerische Mathematik, 31, 377-403.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Haydar Koç

Emre Dunder

Tuba Koc

Publication Date January 4, 2020
Published in Issue Year 2020 Volume: 35 Issue: 3

Cite

APA Koç, H., Dunder, E., & Koc, T. (2020). Multivariate Adaptive Regression Splines (Mars) Method For Unemployment in OECD Countries. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 35(3), 46-51.
AMA Koç H, Dunder E, Koc T. Multivariate Adaptive Regression Splines (Mars) Method For Unemployment in OECD Countries. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. January 2020;35(3):46-51.
Chicago Koç, Haydar, Emre Dunder, and Tuba Koc. “Multivariate Adaptive Regression Splines (Mars) Method For Unemployment in OECD Countries”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 35, no. 3 (January 2020): 46-51.
EndNote Koç H, Dunder E, Koc T (January 1, 2020) Multivariate Adaptive Regression Splines (Mars) Method For Unemployment in OECD Countries. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 35 3 46–51.
IEEE H. Koç, E. Dunder, and T. Koc, “Multivariate Adaptive Regression Splines (Mars) Method For Unemployment in OECD Countries”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 35, no. 3, pp. 46–51, 2020.
ISNAD Koç, Haydar et al. “Multivariate Adaptive Regression Splines (Mars) Method For Unemployment in OECD Countries”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 35/3 (January 2020), 46-51.
JAMA Koç H, Dunder E, Koc T. Multivariate Adaptive Regression Splines (Mars) Method For Unemployment in OECD Countries. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020;35:46–51.
MLA Koç, Haydar et al. “Multivariate Adaptive Regression Splines (Mars) Method For Unemployment in OECD Countries”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 35, no. 3, 2020, pp. 46-51.
Vancouver Koç H, Dunder E, Koc T. Multivariate Adaptive Regression Splines (Mars) Method For Unemployment in OECD Countries. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020;35(3):46-51.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.