Araştırma Makalesi
BibTex RIS Kaynak Göster

Stepwise Algorithms For Person And Object Tracking In Industry 4.0

Yıl 2020, Cilt: 36 Sayı: 3, 299 - 306, 31.12.2020

Öz

The data in a tracking event are usually an object that enables tracking, a tracked object, and the time information at which these two objects interact. These data can be obtained using different technologies which are expected to be widely used in Industry 4.0, such as RFID, image processing, ibeacon. Tracked object’s electronic product code (EPC), tracker object’s code and time interaction data obtained with these technologies are transferred to the cloud thanks to the Internet of Things (IoT), which is also considered as one of the components of Industry 4.0. Thus “big data”, another component of Industry 4.0, is formed. In this study, how to reduce tracking data without losing its value and then how to convert it into meaningful data by processing step by step are explained with prepared algorithms. These processed data are used for different reports. The queries used for tracking and the relative time algorithms to evaluate efficiency were shared also in the study. Although studied tracking data is obtained by short-range RFID, these algorithms can be used for different technologies that perform object tracking.

Kaynakça

  • [1] Hermann, M., Pentek, T., & Otto, B. 2016. Design principles for industrie 4.0 scenarios. In 2016 49th Hawaii international conference on system sciences (HICSS), January, 3928-3937, IEEE.
  • [2] Büchi, G., Cugno, M., & Castagnoli, R. 2020. Smart factory performance and Industry 4.0. Technological Forecasting and Social Change, 150, 119790.
  • [3] Trappey, A. J., Trappey, C. V., Govindarajan, U. H., Chuang, A. C., & Sun, J. J. 2017. A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0. Advanced Engineering Informatics, 33, 208-229.
  • [4] Bandyopadhyay, D., & Sen, J. 2011. Internet of things: Applications and challenges in technology and standardization. Wireless personal communications, 58(1), 49-69.
  • [5] Wang, F., Liu, S., & Liu, P. 2010. A temporal RFID data model for querying physical objects. Pervasive and Mobile Computing, 6(3), 382-397.
  • [6] Turk, M. A., & Pentland, A. P. 1991. Face recognition using eigenfaces. In Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June, 586-591, IEEE.
  • [7] He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H. J. 2005. Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis & Machine Intelligence, (3), 328-340.
  • [8] Parkhi, O. M., Vedaldi, A., & Zisserman, A. 2015, September. Deep face recognition. In bmvc , 1(3), 6.
  • [9] Zou, H., Chen, Z., Jiang, H., Xie, L., & Spanos, C. 2017, Accurate indoor localization and tracking using mobile phone inertial sensors, WiFi and iBeacon. In 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), March, 1-4, IEEE.
  • [10] Başkır, S. G., & Ors, B. 2013. Implementation of a secure RFID protocol. In 2013 21st Signal Processing and Communications Applications Conference (SIU) , April, 1-4 , IEEE.
  • [11] Da Xu, L., He, W., & Li, S. 2014. Internet of things in industries: A survey. IEEE Transactions on industrial informatics, 10(4), 2233-2243.
  • [12] Sun, C. 2012. Application of RFID technology for logistics on internet of things. AASRI Procedia, 1, 106-111.
  • [13] Gonzalez, H., Han, J., Li, X., & Klabjan, D. 2006. Warehousing and Analyzing Massive RFID Data Sets. In ICDE, April, 6(83).
  • [14] Nikitin, P. V., Martinez, R., Ramamurthy, S., Leland, H., Spiess, G., & Rao, K. V. S. 2010. spatial identification of UHF RFID tags. In 2010 IEEE International Conference on RFID (IEEE RFID Phase based 2010), 102-109. IEEE.
  • [15] Lin, X. Y., Ho, T. W., Fang, C. C., Yen, Z. S., Yang, B. J., & Lai, F. 2015. A mobile indoor positioning system based on iBeacon technology. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August, 4970-4973, IEEE.
  • [16] Wang, F., & Liu, P. 2005.Temporal management of RFID data. In Proceedings of the 31st international conference on Very large data bases , August, 1128-1139, VLDB Endowment.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Çağla Ediz 0000-0002-0793-3722

Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 36 Sayı: 3

Kaynak Göster

APA Ediz, Ç. (2020). Stepwise Algorithms For Person And Object Tracking In Industry 4.0. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 36(3), 299-306.
AMA Ediz Ç. Stepwise Algorithms For Person And Object Tracking In Industry 4.0. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Aralık 2020;36(3):299-306.
Chicago Ediz, Çağla. “Stepwise Algorithms For Person And Object Tracking In Industry 4.0”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36, sy. 3 (Aralık 2020): 299-306.
EndNote Ediz Ç (01 Aralık 2020) Stepwise Algorithms For Person And Object Tracking In Industry 4.0. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36 3 299–306.
IEEE Ç. Ediz, “Stepwise Algorithms For Person And Object Tracking In Industry 4.0”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 36, sy. 3, ss. 299–306, 2020.
ISNAD Ediz, Çağla. “Stepwise Algorithms For Person And Object Tracking In Industry 4.0”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36/3 (Aralık 2020), 299-306.
JAMA Ediz Ç. Stepwise Algorithms For Person And Object Tracking In Industry 4.0. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020;36:299–306.
MLA Ediz, Çağla. “Stepwise Algorithms For Person And Object Tracking In Industry 4.0”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 36, sy. 3, 2020, ss. 299-06.
Vancouver Ediz Ç. Stepwise Algorithms For Person And Object Tracking In Industry 4.0. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020;36(3):299-306.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.