Research Article
BibTex RIS Cite

Fabrication and Characterization of Polyaniline and PolyanilineNanostructured-ZnO FET Hydrogen Gas Sensors

Year 2021, Volume: 37 Issue: 1, 99 - 109, 28.04.2021

Abstract

Bu çalışmada, mikron-boyutlu alan etkili transistör sensörler polianilin kanallar kullanılarak üretildi. ZnO nanoparçacık katkılı ve katkısız Polianilin (PANI) sentezlenmiştir. Sentezlenen her iki PANI kullanılarak gaz algılama uygulaması için mikrofabrikasyon yöntemiyle mikron boyutlu, alan etkili transistör (FET) yapıda sensörler üretilmiştir. FET üretimi optik litografi yöntemiyle Si/SiO2 (285 nm) alttaş üzerine PANI ve PANI/ZnO kanal yapıların üretilmesiyle gerçekleştirilmiştir. Üretilen sensörlerin hidrojen (H2) gazına karşı gösterdiği elektriksel tepkiler, 25 ˚C, 50 ˚C ve 80 ˚C sıcaklıkta transistöre +20 V kapı gerilimi uygulanırken, kaynak-akaç akımı değişimleri ölçülerek belirlenmiştir. PANI kanal ile üretilen sensörlerin H2 gazını algıladığı ancak PANI içerisine ZnO nanokompozit katkılamanın algılama performansını iyileştirdiği gözlemlenmiştir. Ayrıca PANI kanallı FET sensörün aksine PANI/ZnO kanallı FET sensörlerin oda sıcaklığında oldukça iyi bir performansla çalıştığı tespit edilmiştir.

Supporting Institution

YOZGAT BOZOK ÜNİVERSİTESİ PROJE KOORDİNASYON UYGULAMA VE ARAŞTIRMA MERKEZİ

Project Number

6602c-FEN/19-325

References

  • [1] Timmer B., Olthuis W., van den Berg A., Ammonia sensors and their applications review. Sensors and Actuators B: Chemical, 107 (2005), 666-677.
  • [2] Mahajan S. 1985. Pollution Control in Process Industries. Tata McGrawHill Education, Noida, India.
  • [3] Gu H., Wang Z., Hu Y., Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors, 12 (2012) 5517–5550.
  • [4] Neri G., First fifty years of chemo resistive gas sensors. Chemosensors, 3 (2015), 1-20.
  • [5] Farooqi B.A., Yar M., Ashraf A., Farooq U., Ayub K., Remarkable enhancement in sensor ability of polyaniline upon composite formation with ZnO for industrial effluents. Journal of Molecular Graphics and Modelling, 101 (2020) 107724.
  • [6] Chougule M.A., Nalage S.R., Sen S., Patil V.B., Development of nanostructured ZnO thin film sensor for NO2 detection. Journal of Experimental Nanoscience, 9 (2014), 482-490.
  • [7] Patil L.A., Bari A.R., Shinde, Deo V., Ultrasonically synthesized nanocrystalline ZnO powder-based thick film sensor for ammonia sensing. Sensor Review, 30 (2010) 290-296.
  • [8] Van Hieu N., Van Quang V., Hoa N.D., Kim D., Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route. Current Applied Physics, 11 (2011), 657-661.
  • [9] Sanchez M., Rincon M.E., Sensor response of sol-gel multiwalled carbon nanotubes-TiO2 composites deposited by screen-printing and dip-coating techniques. Sensors and Actuators B: Chemical, 140 (2009), 17-23.
  • [10] Gu H.,Wang Z., Hu Y., Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors, 12 (2012), 5517–5550.
  • [11] Hubert T., Boon-Brett L., Black G., Banach U., Hydrogen sensors: a review. Sensors and Actuators B, 157 (2011), 329–352.
  • [12] Zhao X., Lv L., Pan B., Zhang W., Zhang S., Zhang Q., Polymer-supported nanocomposites for environmental application: a review. Chemical Engineering Journal, 170 (2011), 381–394.
  • [13] Yoshioka Y., Jabbour G.E., Desktop inkjet printer as a tool to print conducting polymers. Synthetic metals, 156 (2006), 779–783.
  • [14] Li X., Wang Z., Li X., Wang G., Synthesis of a super-hydrophilic conducting polyaniline/titanium oxide hybrid with a narrow pore size distribution. Applied Surface Science, 258 (2012), 4788–4793.
  • [15] Gui D., Liu C., Chen F., Liu J., Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Applied Surface Science, 307 (2014),172–177.
  • [16] Li Y., Lin Y., Yeh H., Wen T., Huang L., Chen Y., Wang Y., Ion-modulated electrical conduction in polyaniline-based field-effect transistors. Applied Physics Letters, 92 (2008), 093508.
  • [17] Wang S., Kang Y., Wang L., Zhang H., Wang Y., Wang Y., Organic/inorganic hybrid sensors: a review. Sensors and Actuators B, 182 (2013), 467–481.
  • [18] Nicolas-Debarnot D., Poncin-Epaillard F., Polyaniline as a new sensitive layer for gas sensors. Analytica chimica acta, 475 (2003), 1–15.
  • [19] Hübert T., Boon-Brett L., Black G., Banach U., Hydrogen sensors – A review. Sensors and Actuators B, 157 (2011), 329–352.
  • [20] Al-Mashat L., Tran H.D., Wlodarski W., Kaner R.B., Kalantar-Zadeh K., Conductometric hydrogen gas sensor based on polypyrrole nanofibers. IEEE Sensors Journal, 8 (2008), 365-370.
  • [21] Bhadra S., Khastgir D., Singha N.K., Lee J.H., Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 34 (2009), 783–810.
  • [22] Srivastava S., Kumar S., Singh V.N., Singh M., Vijay Y.K., Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing. International Journal of Hydrogen Energy, 36 (2011), 6343-6355.
  • [23] MacDiarmid A.G., Synthetic metals: a novel role for organic polymers. Synthetic metals, 125 (2002), 11–22.
  • [24] Chandrakanthi R.L., Careem M., Preparation and characterization of CdS and Cu2S nanoparticle/polyaniline composite films. Thin Solid Films, 417 (2002), 51-56.
  • [25] He Y., Synthesis of polyaniline/nano-CeO2 composite microspheres via a solid-stabilized emulsion route. Materials Chemistry and Physics, 92 (2005), 134-137.
  • [26] Su S.-J., Kuramoto N., Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synthetic metals, 114 (2000), 147-153.
  • [27] Chauhan J., Preparation and characterization of polyaniline/ZnO composite sensor. Nanomedicine Research Journal, 5 (2017).
  • [28] Tai H., Jiang Y., Xie G., Yu J., Chen X., Fabrication and gas sensitivity of polyanilineetitanium dioxide nanocomposite thin film. Sensors and Actuators B: Chemical, 125 (2007), 644-650.
  • [29] Geng L., Zhao Y., Huang X., Wang S., Zhang S., Wu S., Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route. Sensors and Actuators B: Chemical, 120 (2007), 568-572.
  • [30] Parvatikar N., Jain S., Khasim S., Revansiddappa M., Bhoraskar S.V., Prasad M.V.N.A., Electrical and humidity sensing properties of polyaniline/ WO3 composites. Sensors and Actuators B: Chemical, 114 (2006), 599-603.
  • [31] Patil S.L., Chougule M.A., Pawar S.G., Sen S., Moholkar A. V., Kim J.H.,. Patil V.B, Fabrication of polyaniline-ZnO nanocomposite gas sensor. Sensors and Transducers, 134 (2011), 120.
  • [32] Huang J., Yang T., Kang Y., Wang Y., Wang S., Gas sensing performance of polyaniline/ZnO organic-inorganic hybrids for detecting VOCs at low temperature. Journal of Natural Gas Chemistry, 20 (2011), 515-519.
  • [33] Sadek A.Z., Baker C.O., Powell D.A., Wlodarski W., Kaner R.B., Kalantar-Zadeh K., Polyaniline nanofiber-based surface acoustic wave gas sensors-effect of nanofiber diameter on H2 response, IEEE Sensors Journal, 7 (2) (2007), 213–218.
  • [34] Nasirian Sh., Milani Moghaddam H., Hydrogen gas sensing based on polyaniline/anatase titania nanocomposite, International Journal of Hydrogen Energy, 39 (2014), 630–642.
  • [35] Sadek A.Z., Wlodarski W., Kalantar-Zadeh K., Baker C., Kaner R.B., Doped and doped polyaniline nanofiber-based conductometric hydrogen gas sensors, Sensors and Actuators A, 139 (2007), 53–57.
  • [36] Tai H., Jiang Y., Xie G., Yu J., Chen X., Ying Z., Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sensors and Actuators B, 129 (2008), 319–326.
  • [37] Milani Moghaddam H., Nasirian Sh., Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions, Applied Surface Science, 317 (2014), 117–124.
  • [38] Su S., Kuramoto N., Processable polyaniline–titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synthetic Metals,. 114 (2000), 147–153.
  • [39] Xia X., Chao D., Qi X.,. Xiong Q, Zhang Y., Tu J., Zhang H., Jin Fan H., Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties, Nano Letters, 13 (9) (2013), 4562–4568.
  • [40] Diebold U., The surface science of titanium dioxide. Surface science reports, 48 (2003), 53–229.
  • [41] Batzill M., Diebold U., The surface and materials science of tin oxide. Progress in Surface Science, 79 (2005), 47–154.
  • [42] Goncalves R.H., Schreiner W.H., Leite E.R., Synthesis of TiO2 nanocrystals with a high affinity for organic amine compounds. Langmuir, 26 (14) (2010), 11657–11662.
  • [43] MacDiarmid A.G. 2005. Presentation at DOE Center of Excellence on Carbon-based H2 storage. USA.
  • [44] Nasirian S., Milani Moghaddam H., Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions. Applied Surface Science, 328 (2015), 395–404.
  • [45] Fang Q., Chetwynd D. G., Covington J.A., Toh C. S., Gardner J. W., Micro gas-sensor with conducting polymers. Sensors and Actuators B: Chemical, 84 (2002), 66-71.
  • [46] Lim J.H., Phiboolsirichit N., Mubeen S., Deshusses M., Mulchandani A. and Myung N., Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes. Nanotechnology, 21 (2010), 075502-075508.
  • [47] Li N., Li X.T., Geng W.C., Zhang T., Zuo Y., Qiu S. L., Synthesis and humidity sensitivity of conducting polyaniline in SBA-15. Journal of applied polymer science, 93 (2004), 1597-1601.
  • [48] Aguilar A. D., Forzani E. S., Li X., Tao N., Nagahara L. A., Amlani I. and Tsui R., Chemical sensors using peptide-functionalized conducting polymer nano junction arrays. Applied Physics Letters, 87 (2005), 193108.
  • [49] Chabukswar V. V., Pethkar S. and Athawale A. A., Acrylic acid doped polyaniline as an ammonia sensor. Sensors and Actuators B: Chemical, 77(2001), 657-663.
  • [50] Li D., Jiang Y., Wu Z., Chen X. and Li Y., Self-assembly of polyaniline ultrathin films based on doping-induced deposition effect and applications for chemical sensors. Sensors and Actuators B: Chemical, 66 (2000), 125-127.
  • [51] Hirlemann A., Brand O., Hagleitner C., Baltes H., Microfabrication Techniques for Chemical/Biosensors. Proceedings of the IEEE, 91 (6) (2003), 839-863.
  • [52] Saini P., Choudhary V. and Dhawan S. K., Electrical properties and EMI shielding behavior of highly thermally stable polyaniline/colloidal graphite composites. Polymers for Advanced Technologies, 20 (2009), 355-361.
  • [53] Renkuan Y., Shucheng Y., Hong Y., Ruolian J., Huizuo Q. and Decheng G., Surface Field Effect of Polyaniline Film. Synthetic Metals, 41 (1991), 727-730.
  • [54] Park Y., Moon D. K., Kim Y. H., Ahn H., Lee C. H., Adsorption isotherms of CO2, CO, N2, CH4, Ar and H2 on activated carbon and zeolite LiX up to 1.0 MPa. Adsorption, 20 (2014), 631-647.
  • [55] Kaiser B., Liu C. J., Gilberd P. W., Chapman B., Kemp N. T., Wessling B. B., Partridge A. C., Smith W. T. and Shapiro J., Comparison of electronic transport in polyaniline blends, polyaniline and polypyrrole. Synthetic Metals, 84 (1997), 699-702.

Fabrication and Characterization of Polyaniline/ZnO Nanocomposite Field Effect Transistor Based Hydrogen Gas Sensor

Year 2021, Volume: 37 Issue: 1, 99 - 109, 28.04.2021

Abstract

In this study, micron-sized Field Effect Transistor (FET) based sensors were produced using Polyaniline (PANI) channels. PANI was synthesized with and without ZnO nanoparticles. FET production was carried out by producing PANI and PANI/ZnO channel structures on Si/SiO2 (285 nm) substrate by the optical lithography method. The electrical responses of the produced sensors against hydrogen (H2) gas were determined by measuring the source-drain current at 25 ˚C, 50 ˚C and 80 ˚C while applying the +20 V gate voltage to the transistors. It has been observed that the sensors which were produced by PANI channel, detect H2 gas but adding ZnO nanocomposite into PANI improves the detection performance. Besides, unlike the PANI channel FET sensor, it has been determined that PANI/ZnO channel FET sensors operate with an excellent performance at room temperature.

Project Number

6602c-FEN/19-325

References

  • [1] Timmer B., Olthuis W., van den Berg A., Ammonia sensors and their applications review. Sensors and Actuators B: Chemical, 107 (2005), 666-677.
  • [2] Mahajan S. 1985. Pollution Control in Process Industries. Tata McGrawHill Education, Noida, India.
  • [3] Gu H., Wang Z., Hu Y., Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors, 12 (2012) 5517–5550.
  • [4] Neri G., First fifty years of chemo resistive gas sensors. Chemosensors, 3 (2015), 1-20.
  • [5] Farooqi B.A., Yar M., Ashraf A., Farooq U., Ayub K., Remarkable enhancement in sensor ability of polyaniline upon composite formation with ZnO for industrial effluents. Journal of Molecular Graphics and Modelling, 101 (2020) 107724.
  • [6] Chougule M.A., Nalage S.R., Sen S., Patil V.B., Development of nanostructured ZnO thin film sensor for NO2 detection. Journal of Experimental Nanoscience, 9 (2014), 482-490.
  • [7] Patil L.A., Bari A.R., Shinde, Deo V., Ultrasonically synthesized nanocrystalline ZnO powder-based thick film sensor for ammonia sensing. Sensor Review, 30 (2010) 290-296.
  • [8] Van Hieu N., Van Quang V., Hoa N.D., Kim D., Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route. Current Applied Physics, 11 (2011), 657-661.
  • [9] Sanchez M., Rincon M.E., Sensor response of sol-gel multiwalled carbon nanotubes-TiO2 composites deposited by screen-printing and dip-coating techniques. Sensors and Actuators B: Chemical, 140 (2009), 17-23.
  • [10] Gu H.,Wang Z., Hu Y., Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors, 12 (2012), 5517–5550.
  • [11] Hubert T., Boon-Brett L., Black G., Banach U., Hydrogen sensors: a review. Sensors and Actuators B, 157 (2011), 329–352.
  • [12] Zhao X., Lv L., Pan B., Zhang W., Zhang S., Zhang Q., Polymer-supported nanocomposites for environmental application: a review. Chemical Engineering Journal, 170 (2011), 381–394.
  • [13] Yoshioka Y., Jabbour G.E., Desktop inkjet printer as a tool to print conducting polymers. Synthetic metals, 156 (2006), 779–783.
  • [14] Li X., Wang Z., Li X., Wang G., Synthesis of a super-hydrophilic conducting polyaniline/titanium oxide hybrid with a narrow pore size distribution. Applied Surface Science, 258 (2012), 4788–4793.
  • [15] Gui D., Liu C., Chen F., Liu J., Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Applied Surface Science, 307 (2014),172–177.
  • [16] Li Y., Lin Y., Yeh H., Wen T., Huang L., Chen Y., Wang Y., Ion-modulated electrical conduction in polyaniline-based field-effect transistors. Applied Physics Letters, 92 (2008), 093508.
  • [17] Wang S., Kang Y., Wang L., Zhang H., Wang Y., Wang Y., Organic/inorganic hybrid sensors: a review. Sensors and Actuators B, 182 (2013), 467–481.
  • [18] Nicolas-Debarnot D., Poncin-Epaillard F., Polyaniline as a new sensitive layer for gas sensors. Analytica chimica acta, 475 (2003), 1–15.
  • [19] Hübert T., Boon-Brett L., Black G., Banach U., Hydrogen sensors – A review. Sensors and Actuators B, 157 (2011), 329–352.
  • [20] Al-Mashat L., Tran H.D., Wlodarski W., Kaner R.B., Kalantar-Zadeh K., Conductometric hydrogen gas sensor based on polypyrrole nanofibers. IEEE Sensors Journal, 8 (2008), 365-370.
  • [21] Bhadra S., Khastgir D., Singha N.K., Lee J.H., Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 34 (2009), 783–810.
  • [22] Srivastava S., Kumar S., Singh V.N., Singh M., Vijay Y.K., Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing. International Journal of Hydrogen Energy, 36 (2011), 6343-6355.
  • [23] MacDiarmid A.G., Synthetic metals: a novel role for organic polymers. Synthetic metals, 125 (2002), 11–22.
  • [24] Chandrakanthi R.L., Careem M., Preparation and characterization of CdS and Cu2S nanoparticle/polyaniline composite films. Thin Solid Films, 417 (2002), 51-56.
  • [25] He Y., Synthesis of polyaniline/nano-CeO2 composite microspheres via a solid-stabilized emulsion route. Materials Chemistry and Physics, 92 (2005), 134-137.
  • [26] Su S.-J., Kuramoto N., Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synthetic metals, 114 (2000), 147-153.
  • [27] Chauhan J., Preparation and characterization of polyaniline/ZnO composite sensor. Nanomedicine Research Journal, 5 (2017).
  • [28] Tai H., Jiang Y., Xie G., Yu J., Chen X., Fabrication and gas sensitivity of polyanilineetitanium dioxide nanocomposite thin film. Sensors and Actuators B: Chemical, 125 (2007), 644-650.
  • [29] Geng L., Zhao Y., Huang X., Wang S., Zhang S., Wu S., Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route. Sensors and Actuators B: Chemical, 120 (2007), 568-572.
  • [30] Parvatikar N., Jain S., Khasim S., Revansiddappa M., Bhoraskar S.V., Prasad M.V.N.A., Electrical and humidity sensing properties of polyaniline/ WO3 composites. Sensors and Actuators B: Chemical, 114 (2006), 599-603.
  • [31] Patil S.L., Chougule M.A., Pawar S.G., Sen S., Moholkar A. V., Kim J.H.,. Patil V.B, Fabrication of polyaniline-ZnO nanocomposite gas sensor. Sensors and Transducers, 134 (2011), 120.
  • [32] Huang J., Yang T., Kang Y., Wang Y., Wang S., Gas sensing performance of polyaniline/ZnO organic-inorganic hybrids for detecting VOCs at low temperature. Journal of Natural Gas Chemistry, 20 (2011), 515-519.
  • [33] Sadek A.Z., Baker C.O., Powell D.A., Wlodarski W., Kaner R.B., Kalantar-Zadeh K., Polyaniline nanofiber-based surface acoustic wave gas sensors-effect of nanofiber diameter on H2 response, IEEE Sensors Journal, 7 (2) (2007), 213–218.
  • [34] Nasirian Sh., Milani Moghaddam H., Hydrogen gas sensing based on polyaniline/anatase titania nanocomposite, International Journal of Hydrogen Energy, 39 (2014), 630–642.
  • [35] Sadek A.Z., Wlodarski W., Kalantar-Zadeh K., Baker C., Kaner R.B., Doped and doped polyaniline nanofiber-based conductometric hydrogen gas sensors, Sensors and Actuators A, 139 (2007), 53–57.
  • [36] Tai H., Jiang Y., Xie G., Yu J., Chen X., Ying Z., Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sensors and Actuators B, 129 (2008), 319–326.
  • [37] Milani Moghaddam H., Nasirian Sh., Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions, Applied Surface Science, 317 (2014), 117–124.
  • [38] Su S., Kuramoto N., Processable polyaniline–titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synthetic Metals,. 114 (2000), 147–153.
  • [39] Xia X., Chao D., Qi X.,. Xiong Q, Zhang Y., Tu J., Zhang H., Jin Fan H., Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties, Nano Letters, 13 (9) (2013), 4562–4568.
  • [40] Diebold U., The surface science of titanium dioxide. Surface science reports, 48 (2003), 53–229.
  • [41] Batzill M., Diebold U., The surface and materials science of tin oxide. Progress in Surface Science, 79 (2005), 47–154.
  • [42] Goncalves R.H., Schreiner W.H., Leite E.R., Synthesis of TiO2 nanocrystals with a high affinity for organic amine compounds. Langmuir, 26 (14) (2010), 11657–11662.
  • [43] MacDiarmid A.G. 2005. Presentation at DOE Center of Excellence on Carbon-based H2 storage. USA.
  • [44] Nasirian S., Milani Moghaddam H., Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions. Applied Surface Science, 328 (2015), 395–404.
  • [45] Fang Q., Chetwynd D. G., Covington J.A., Toh C. S., Gardner J. W., Micro gas-sensor with conducting polymers. Sensors and Actuators B: Chemical, 84 (2002), 66-71.
  • [46] Lim J.H., Phiboolsirichit N., Mubeen S., Deshusses M., Mulchandani A. and Myung N., Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes. Nanotechnology, 21 (2010), 075502-075508.
  • [47] Li N., Li X.T., Geng W.C., Zhang T., Zuo Y., Qiu S. L., Synthesis and humidity sensitivity of conducting polyaniline in SBA-15. Journal of applied polymer science, 93 (2004), 1597-1601.
  • [48] Aguilar A. D., Forzani E. S., Li X., Tao N., Nagahara L. A., Amlani I. and Tsui R., Chemical sensors using peptide-functionalized conducting polymer nano junction arrays. Applied Physics Letters, 87 (2005), 193108.
  • [49] Chabukswar V. V., Pethkar S. and Athawale A. A., Acrylic acid doped polyaniline as an ammonia sensor. Sensors and Actuators B: Chemical, 77(2001), 657-663.
  • [50] Li D., Jiang Y., Wu Z., Chen X. and Li Y., Self-assembly of polyaniline ultrathin films based on doping-induced deposition effect and applications for chemical sensors. Sensors and Actuators B: Chemical, 66 (2000), 125-127.
  • [51] Hirlemann A., Brand O., Hagleitner C., Baltes H., Microfabrication Techniques for Chemical/Biosensors. Proceedings of the IEEE, 91 (6) (2003), 839-863.
  • [52] Saini P., Choudhary V. and Dhawan S. K., Electrical properties and EMI shielding behavior of highly thermally stable polyaniline/colloidal graphite composites. Polymers for Advanced Technologies, 20 (2009), 355-361.
  • [53] Renkuan Y., Shucheng Y., Hong Y., Ruolian J., Huizuo Q. and Decheng G., Surface Field Effect of Polyaniline Film. Synthetic Metals, 41 (1991), 727-730.
  • [54] Park Y., Moon D. K., Kim Y. H., Ahn H., Lee C. H., Adsorption isotherms of CO2, CO, N2, CH4, Ar and H2 on activated carbon and zeolite LiX up to 1.0 MPa. Adsorption, 20 (2014), 631-647.
  • [55] Kaiser B., Liu C. J., Gilberd P. W., Chapman B., Kemp N. T., Wessling B. B., Partridge A. C., Smith W. T. and Shapiro J., Comparison of electronic transport in polyaniline blends, polyaniline and polypyrrole. Synthetic Metals, 84 (1997), 699-702.
There are 55 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Article
Authors

Mucella Özbay Karakuş

Hidayet Çetin

Project Number 6602c-FEN/19-325
Publication Date April 28, 2021
Published in Issue Year 2021 Volume: 37 Issue: 1

Cite

APA Özbay Karakuş, M., & Çetin, H. (2021). Fabrication and Characterization of Polyaniline/ZnO Nanocomposite Field Effect Transistor Based Hydrogen Gas Sensor. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 37(1), 99-109.
AMA Özbay Karakuş M, Çetin H. Fabrication and Characterization of Polyaniline/ZnO Nanocomposite Field Effect Transistor Based Hydrogen Gas Sensor. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. April 2021;37(1):99-109.
Chicago Özbay Karakuş, Mucella, and Hidayet Çetin. “Fabrication and Characterization of Polyaniline/ZnO Nanocomposite Field Effect Transistor Based Hydrogen Gas Sensor”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37, no. 1 (April 2021): 99-109.
EndNote Özbay Karakuş M, Çetin H (April 1, 2021) Fabrication and Characterization of Polyaniline/ZnO Nanocomposite Field Effect Transistor Based Hydrogen Gas Sensor. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37 1 99–109.
IEEE M. Özbay Karakuş and H. Çetin, “Fabrication and Characterization of Polyaniline/ZnO Nanocomposite Field Effect Transistor Based Hydrogen Gas Sensor”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 37, no. 1, pp. 99–109, 2021.
ISNAD Özbay Karakuş, Mucella - Çetin, Hidayet. “Fabrication and Characterization of Polyaniline/ZnO Nanocomposite Field Effect Transistor Based Hydrogen Gas Sensor”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37/1 (April 2021), 99-109.
JAMA Özbay Karakuş M, Çetin H. Fabrication and Characterization of Polyaniline/ZnO Nanocomposite Field Effect Transistor Based Hydrogen Gas Sensor. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2021;37:99–109.
MLA Özbay Karakuş, Mucella and Hidayet Çetin. “Fabrication and Characterization of Polyaniline/ZnO Nanocomposite Field Effect Transistor Based Hydrogen Gas Sensor”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 37, no. 1, 2021, pp. 99-109.
Vancouver Özbay Karakuş M, Çetin H. Fabrication and Characterization of Polyaniline/ZnO Nanocomposite Field Effect Transistor Based Hydrogen Gas Sensor. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2021;37(1):99-109.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.