Medikal verilerin sınıflandırılması ve analizi, çeşitli sağlık sorunlarının tanısında ve tedavisinde önemli bir rol oynar. Medikal veriler, içerdikleri hassas bilgiler nedeniyle özel güvenlik önlemlerine gereksinim duyarlar. Bu nedenle, veri paylaşımı olmadan model eğitimi işlemlerinin uç noktalarda gerçekleştirilmesini, veri paylaşımı yerine model parametrelerinin paylaşılmasını ve güncellenmesini sağlayan federe öğrenme yaklaşımları kullanılır. Bu sayede, veriler merkezi bir sunucuda toplanmadığından ve paylaşılmadığından, gizlilik riskleri azalır. Bir federe öğrenme yaklaşımı olan FedAvg, katılan tüm uç noktaların yerel model parametrelerinin ortalamasını alarak küresel modeli günceller. Ancak bu yöntemde, uç noktalar farklı model performanslarına sahip olduğunda yakınsama süresi ve performansı etkileyen sınırlamalar ortaya çıkar. Bu çalışmada bu sınırlamaları ortadan kaldırmak için en yüksek yerel model test doğruluğuna sahip uç noktanın yerel model parametrelerini kullanarak küresel modeli güncelleyen FedBest isimli bir yaklaşım önerilmiştir. Önerilen FedBest yaklaşımı ile FedAvg yaklaşımının performansları BloodMNIST, PathMNIST ve DermaMNIST veri setleri üzerinde kıyaslanmıştır. Deneylerden elde edilen sonuçlara göre, FedAvg’nin medikal sınıflandırmada başarılı olduğu ancak FedBest algoritmasının, daha yüksek doğruluk oranlarına ve daha hızlı bir yakınsamaya sahip olduğu görülmüştür.
Federe Öğrenme İşbirlikçi Öğrenme Medikal Veri Veri Gizliliği Derin Öğrenme
Birincil Dil | Türkçe |
---|---|
Konular | Derin Öğrenme, Veri ve Bilgi Gizliliği |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 31 Aralık 2023 |
Yayımlanma Tarihi | 31 Aralık 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 39 Sayı: 3 |
✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.