Research Article
BibTex RIS Cite

Al2O3 Recovery From Waste Tetra Pak Packages

Year 2023, Volume: 39 Issue: 3, 463 - 474, 31.12.2023

Abstract

In this study, it was aimed to obtain Al2O3 from waste Tetra Pak packages by using the hydrometallurgical method. Tetra Pak recycling has become an increasingly researched topic around the world. Cellulose, polyethylene and aluminum, which form the structure of Tetra Pak packages, are raw materials that can be reused after recycling. Cellulose was separated from Tetra Pak's structure by hydropulping process and polyethylene was separated from Tetra Pak's structure by leaching with HCl, and optimum parameters of these processes were investigated in experimental studies. Aluminum in the structure was dissolved in acid solution with 100% efficiency in the experiments carried out with 0.1750 M and 0.1312 M acid concentration. Aluminum, which was dissolved in acid solution, was obtained as the AlCl3 phase and precipitated as Al(OH)3 with the addition of 100% stoichiometric NaOH, and the precipitates were calcined at 950 °C for 1 hour to obtain the Al2O3 structure. The materials used in the experimental studies and the products obtained as a result of these experiments were analyzed by Atomic Absorption Spectrometry (AAS), Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM) / Energy-Dispersive X-ray Spectroscopy (EDS), and optical microscopy techniques.

References

  • [1] Haydary, J., Susa, D., Dudás, J. 2013. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition. Waste Management, 33(5), 1136-1141.
  • [2] Solak, A., Rutkowski, P. 2014. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene. Waste Management, 34(2), 504-512.
  • [3] Rodríguez-Gómez, J.E., Silva-Reynoso, Y.Q., Varela-Guerrero, V., Núñez-Pineda, A., Barrera-Díaz, C.E. 2015. Development of a process using waste vegetable oil for separation of aluminum and polyethylene from Tetra Pak. Fuel , 149, 90-94.
  • [4] Hidalgo-Salazar, M.A. 2011. Manufacturing rigid board by packaging waste containing aluminum and polyethylene. Journal of Scientific & Industrial Research, 70(3), 232-234.
  • [5] Abreu, M. Recycling of tetra pak aseptic cartons. https://d3pcsg2wjq9izr.cloudfront.net/files/0/articles/2268/tetrapak.pdf (Accessed 01.04.2022).
  • [6] Zhang, M., Kamavaram, V., Reddy, R.G. 2003. New electrolytes for aluminum production: ionic liquids. The Journal of The Minerals, Metals & Materials Society (TMS), 55, 54-57.
  • [7] Satish Reddy, M., Neeraja, D. 2018. Aluminum residue waste for possible utilisation as a material: a review. Sadhana, 43, 124.
  • [8] Capuzzi, S., Timelli, G. 2018. Preparation and melting of scrap in aluminum recycling: A review. Metals 8(4), 249.
  • [9] Araghchi, M., Mansouri, H., Vafaei, R., Guo, Y. 2018. Optimization of the Mechanical Properties and Residual Stresses in 2024 Aluminum Alloy Through Heat Treatment. Journal of Materials Engineering and Performance, 27, 3234–3238.
  • [10] Senel, M.C., Gurbuz, M., Koc, E. 2015. New generation composites with graphene reinforced aluminum matrix. Journal of Engineers and Machinery, 56, 36-47.
  • [11] Balomenos, E., Panias, D., Paspaliaris, I. 2011. Energy and exergy analysis of the primary aluminum production processes: A review on current and future sustainability. Mineral Processing and Extractive Metallurgy Review 32(2), 69-89.
  • [12] Poulimenou, N.I., Giannopoulou, I., Panias, D. 2015. Use of ionic liquids as innovative solvents in primary aluminum production. Materials and Manufacturing Processes, 30(12), 1403-1407.
  • [13] Atik, E. 1998. Mechanical properties and wear strengths in aluminium-alumina composites. Materials and Structures, 31, 418-422.
  • [14] Hind, A.R., Bhargava, S.K., Grocott, S.C. 1999. The surface chemistry of Bayer process solids: A review. Colloids Surf. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), 359-374.
  • [15] Ayrilmis, N., Kaymakci, A., Akbulut, T., Elmas, G.M. 2013. Mechanical performance of composites based on wastes of polyethylene aluminum and lignocellulosics. Composites Part B: Engineering, 47, 150-154.
  • [16] Lopes, C.M.A., Felisberti M.I. 2006. Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging. Journal of Applied Polymer Science, 101, 3183-3191.
  • [17] Alvarenga, L.M., Xavier, T.P., Barrozo, M.A.S., Bacelos, M.S., Lira, T.S. 2012. Analysis of reaction kinetics of carton packaging pyrolysis. Procedia Engineering, 42, 113-122.
  • [18] Kaiser, K., Schmid, M., Schlummer, M. 2018. Recycling of polymer-based multilayer packaging: A review. Recycling, 3, 1.
  • [19] Siddiqui, M.Z., Han, T.U., Park, Y.K., Kim, Y.M., Kim, S. 2020. Catalytic pyrolysis of tetra pak over acidic catalysts. Catalyst, 10(6), 602.
  • [20] Korkmaz, A., Yanik, J., Brebu, M., Vasile, C. 2009. Pyrolysis of the tetra pak, Waste Management, 29(11), 2836-2841.
  • [21] Akoglu, B., Azgi, K., Ozpekturk, A., Incir, S., Copur, M., Turan, A. 2016. Production of Polyethylene – Aluminum Composites from Waste Tetra Pak Packages. IMMC 2016, 18th International Metallurgy & Materials Congress, 29 September – 1 October, Istanbul, 359-362.

Atık Tetra Pak Paketlerinden Al2O3 Geri Kazanımı

Year 2023, Volume: 39 Issue: 3, 463 - 474, 31.12.2023

Abstract

Bu çalışmada atık Tetra Pak ambalajlarından hidrometalurjik yöntem kullanılarak Al2O3 elde edilmesi amaçlanmıştır. Tetra Pak geri dönüşümü, dünya çapında giderek daha fazla araştırılan bir konu haline gelmiştir. Tetra Pak ambalajlarının yapısını oluşturan selüloz, polietilen ve alüminyum, geri dönüştürülerek yeniden kullanılabilen hammaddelerdir. Tetra Pak’ın yapısından selüloz hidropulping prosesi ile, polietilen ise HCl ile liç prosesiyle ayrıştırılmış ve deneysel çalışmalarda bu prosesler için optimum parametreler araştırılmıştır. Yapıdaki alüminyum, 0,1750 M ve 0,1312 M asit konsantrasyonuyla yapılan deneylerde %100 verimle çözünmüştür. Asit çözeltisinde çözünen alüminyum, AlCl3 fazı olarak elde edilmiş ve %100 stokiyometrik NaOH ilavesiyle Al(OH)3 olarak çöktürülmüştür. Bu çökeltiler Al2O3 yapısı elde etmek için 950 °C'de 1 saat kalsine edilmiştir. Deneysel çalışmalarda kullanılan malzemelerin ve bu deneyler sonucunda elde edilen ürünlerin analizleri Atomik Absorbsiyon Spektroskopisi (AAS), Fourier Dönüşümlü Kızılötesi (FTIR) Spektroskopisi, Taramalı Elektron Mikroskobu (SEM) / Enerji Saçılımlı X-Işını Spektroskopisi (EDS) ve optik mikroskopi teknikleriyle gerçekleştirilmiştir.

References

  • [1] Haydary, J., Susa, D., Dudás, J. 2013. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition. Waste Management, 33(5), 1136-1141.
  • [2] Solak, A., Rutkowski, P. 2014. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene. Waste Management, 34(2), 504-512.
  • [3] Rodríguez-Gómez, J.E., Silva-Reynoso, Y.Q., Varela-Guerrero, V., Núñez-Pineda, A., Barrera-Díaz, C.E. 2015. Development of a process using waste vegetable oil for separation of aluminum and polyethylene from Tetra Pak. Fuel , 149, 90-94.
  • [4] Hidalgo-Salazar, M.A. 2011. Manufacturing rigid board by packaging waste containing aluminum and polyethylene. Journal of Scientific & Industrial Research, 70(3), 232-234.
  • [5] Abreu, M. Recycling of tetra pak aseptic cartons. https://d3pcsg2wjq9izr.cloudfront.net/files/0/articles/2268/tetrapak.pdf (Accessed 01.04.2022).
  • [6] Zhang, M., Kamavaram, V., Reddy, R.G. 2003. New electrolytes for aluminum production: ionic liquids. The Journal of The Minerals, Metals & Materials Society (TMS), 55, 54-57.
  • [7] Satish Reddy, M., Neeraja, D. 2018. Aluminum residue waste for possible utilisation as a material: a review. Sadhana, 43, 124.
  • [8] Capuzzi, S., Timelli, G. 2018. Preparation and melting of scrap in aluminum recycling: A review. Metals 8(4), 249.
  • [9] Araghchi, M., Mansouri, H., Vafaei, R., Guo, Y. 2018. Optimization of the Mechanical Properties and Residual Stresses in 2024 Aluminum Alloy Through Heat Treatment. Journal of Materials Engineering and Performance, 27, 3234–3238.
  • [10] Senel, M.C., Gurbuz, M., Koc, E. 2015. New generation composites with graphene reinforced aluminum matrix. Journal of Engineers and Machinery, 56, 36-47.
  • [11] Balomenos, E., Panias, D., Paspaliaris, I. 2011. Energy and exergy analysis of the primary aluminum production processes: A review on current and future sustainability. Mineral Processing and Extractive Metallurgy Review 32(2), 69-89.
  • [12] Poulimenou, N.I., Giannopoulou, I., Panias, D. 2015. Use of ionic liquids as innovative solvents in primary aluminum production. Materials and Manufacturing Processes, 30(12), 1403-1407.
  • [13] Atik, E. 1998. Mechanical properties and wear strengths in aluminium-alumina composites. Materials and Structures, 31, 418-422.
  • [14] Hind, A.R., Bhargava, S.K., Grocott, S.C. 1999. The surface chemistry of Bayer process solids: A review. Colloids Surf. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), 359-374.
  • [15] Ayrilmis, N., Kaymakci, A., Akbulut, T., Elmas, G.M. 2013. Mechanical performance of composites based on wastes of polyethylene aluminum and lignocellulosics. Composites Part B: Engineering, 47, 150-154.
  • [16] Lopes, C.M.A., Felisberti M.I. 2006. Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging. Journal of Applied Polymer Science, 101, 3183-3191.
  • [17] Alvarenga, L.M., Xavier, T.P., Barrozo, M.A.S., Bacelos, M.S., Lira, T.S. 2012. Analysis of reaction kinetics of carton packaging pyrolysis. Procedia Engineering, 42, 113-122.
  • [18] Kaiser, K., Schmid, M., Schlummer, M. 2018. Recycling of polymer-based multilayer packaging: A review. Recycling, 3, 1.
  • [19] Siddiqui, M.Z., Han, T.U., Park, Y.K., Kim, Y.M., Kim, S. 2020. Catalytic pyrolysis of tetra pak over acidic catalysts. Catalyst, 10(6), 602.
  • [20] Korkmaz, A., Yanik, J., Brebu, M., Vasile, C. 2009. Pyrolysis of the tetra pak, Waste Management, 29(11), 2836-2841.
  • [21] Akoglu, B., Azgi, K., Ozpekturk, A., Incir, S., Copur, M., Turan, A. 2016. Production of Polyethylene – Aluminum Composites from Waste Tetra Pak Packages. IMMC 2016, 18th International Metallurgy & Materials Congress, 29 September – 1 October, Istanbul, 359-362.
There are 21 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Mehmet Buğdaycı 0000-0001-6276-9251

Ahmet Turan 0000-0002-7578-1089

Levent Öncel 0000-0002-6018-8741

Fatih Bayıroğlu

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 39 Issue: 3

Cite

APA Buğdaycı, M., Turan, A., Öncel, L., Bayıroğlu, F. (2023). Al2O3 Recovery From Waste Tetra Pak Packages. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 39(3), 463-474.
AMA Buğdaycı M, Turan A, Öncel L, Bayıroğlu F. Al2O3 Recovery From Waste Tetra Pak Packages. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. December 2023;39(3):463-474.
Chicago Buğdaycı, Mehmet, Ahmet Turan, Levent Öncel, and Fatih Bayıroğlu. “Al2O3 Recovery From Waste Tetra Pak Packages”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 39, no. 3 (December 2023): 463-74.
EndNote Buğdaycı M, Turan A, Öncel L, Bayıroğlu F (December 1, 2023) Al2O3 Recovery From Waste Tetra Pak Packages. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 39 3 463–474.
IEEE M. Buğdaycı, A. Turan, L. Öncel, and F. Bayıroğlu, “Al2O3 Recovery From Waste Tetra Pak Packages”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 39, no. 3, pp. 463–474, 2023.
ISNAD Buğdaycı, Mehmet et al. “Al2O3 Recovery From Waste Tetra Pak Packages”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 39/3 (December 2023), 463-474.
JAMA Buğdaycı M, Turan A, Öncel L, Bayıroğlu F. Al2O3 Recovery From Waste Tetra Pak Packages. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2023;39:463–474.
MLA Buğdaycı, Mehmet et al. “Al2O3 Recovery From Waste Tetra Pak Packages”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 39, no. 3, 2023, pp. 463-74.
Vancouver Buğdaycı M, Turan A, Öncel L, Bayıroğlu F. Al2O3 Recovery From Waste Tetra Pak Packages. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2023;39(3):463-74.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.