Research Article
BibTex RIS Cite

Merkezi ve Doğu Avrupa ülkelerinde gelir dağılımı yakınsaması: SPSM yönteminden kanıtlar

Year 2019, Issue: 54, 343 - 366, 31.12.2019
https://doi.org/10.18070/erciyesiibd.532758

Abstract

Çalışma
dokuz Merkezi ve Doğu Avrupa (CEE) ülkesinde 1989-2015 döneminde doğrusal
olmayan panel birim kök testlerinden Sıralı Panel Seçim Yöntemini (SPSM)
kullanarak gelir eşitsizliği yakınsaması mı yoksa gelir dağılımı ıraksaması mı
olup olmadığını araştırmaktadır. Çalışmada Fourier
fonksiyonlu doğrusal olmayan Panel KSS (Ucar ve Omay (2009) tarafından
geliştirilen) kullanarak Chortareas ve Kapetanios (2009) tarafından önerilen
SPSM yöntemi uygulanmaktadır. SPSM yöntemi yapısal kırılmalar, doğrusal olmama,
heterojenite ve yatay kesit bağımlılığını kontrol edebilmede oldukça yetkin bir
yöntemdir. Geleneksel birim kök testleri kullanılarak yapılan analizler CEE
ülkeleri için gelir eşitsizliğinin durağan olduğunu yani gelir dağılımının
yakınsadığını elde etmiştir. Diğer taraftan Fourier fonksiyonlu SPSM
yönteminden elde edilen test sonuçlarında da dokuz CEE ülkesi için 1989-2015
döneminde gelir eşitsizliğinin yakınsaması teyit edilmiştir. Sonuçlar, yapısal
kırılmalar, doğrusal olmama, heterojenite ve yatay kesit bağımlılığı için
kontrol sağlanması durumunda da gelir eşitsizliğinin yakınsadığını
göstermektedir. Ülkeler ortak bir gelir eşitsizliği seviyesine yakınsamaktadır.
Elde edilen bulgular makroekonomik politika, modelleme ve öngörü açısından CEE
ülkeleri için önemli politika belirleyicilerine sahiptir.

References

  • BAI, By Jushan and Serena NG; (2005), "Tests for Skewness, Kurtosis, and Normality for Time Series Data", Journal of Busines & Economic Statistics, 23(1), pp. 49-60.
  • BALTAGI, Badi H; (2008), Econometric Analysis of Panel Data (Fourth Edition). West Sussex: John Wiley & Sons.
  • BARRO, Robert J; (1991), “Economic Growth in a Cross Section of Countries”, The Quarterly Journal of Economics, 106(2), pp. 407-443.
  • BARRO, Robert J. and Xavier SALA-I MARTIN; (1991), “Convergence across States and Regions”, Brookings Papers on Economic Activity, 1, pp. 107-182.
  • BARRO, Robert J. and Xavier SALA-I MARTIN; (1992), “Convergence”, The Journal of Political Economy, 100(2), pp. 223-251.
  • BAUMOL, William J; (1986), “Productivity Growth, Convergence, and Welfare: What the Long-Run Data Show”, The American Economic Review, 76(5), pp. 1072-1085.
  • BECKER, Ralf, Walter ENDERS and Junsoo LEE; (2006), “A Stationarity Test in The Presence of An Unknown Number Of Smooth Breaks”, Journal Of Time Series Analysis, 27(3), pp. 381-409.
  • BÉNABOU, Roland; (1996), “Inequality and Growth”, in Ben S. Bernanke, & J. J. Rotemberg (Ed.), NBER Macroeconomics Annual, Vol. 11, Cambridge: MIT Press, pp.11-74.
  • BERNARD, Andrew B. and Steven N. DURLAUF; (1996), “Interpreting Tests of The Convergence Hypothesis”, Journal of Econometrics 71(1-2), pp. 161-173.
  • BREITUNG, Jörg; (2000), "The Local Power of Some Unit Root Tests for Panel Data". Humboldt University. Institute of Statistics and Econometrics. http://edoc.hu-berlin.de/series/sfb-373-papers/1999-69/PDF/69.pdf, (Erişim Tarihi: 20.01.2018), pp. 1-40.
  • BLEANEY, Michael and Akira NISHIYAMA; (2003), “Convergence in Income Inequality: Differences between Advanced and Developing Countries”, Economics Bulletin, 4(22), pp. 1–10.
  • CHAMBERS, Dustin and Shatakshee DHONGDE; (2016), “Convergence in Income Distributions: Evidence from a Panel of Countries”, Economic Modelling, 59, pp. 262-270.
  • CHAMBERS, Dustin and Shatakshee DHONGDE; (2017), “Are Countries Becoming Equally Unequal?, Empirical Economics, 53(4), pp. 1323–1348.
  • CHEN, Yang, Hsu-Ling CHANG and Chi-Wei SU; (2016), “Does real wage converge in China?”, Springer, 11(1), 77-93.
  • CHOI, In; (2002), "Combination Unit Root Tests for Cross Sectionally Correlated Panels". mimeo, Hong Kong University of Science and Technology, pp. 1-26.
  • CHORTAREAS, Georgios and George KAPETANIOS; (2009), “Getting PPP Right: Identifying Mean-Reverting Real Exchange Rates in Panels”, Journal of Banking and Finance, 33(2), pp. 390–404.
  • CHRISTOPOULOS, Dimitris and Miguel LE´ON-LEDESMA; (2010), “Revisiting The Real Wages–Unemployment Relationship. New Results From Non-Linear Models”, Bulletin of Economic Research, 62(1), pp. 79-96.
  • CUARESMA, Jesus Crespo, Doris-Ritzberger GRUNWALD, and Maria Antoinette SILGONER; (2008), “Growth, Convergence and EU Membership”, Applied Economics, 40(5), pp. 643–656.
  • DICKEY, David A. and Wayne A. FULLER; (1981), “Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root”, Econometrica, 49(4), pp. 1057–1072.
  • DOWRICK, Steve and Duc-Tho NGUYEN; (1989), “OECD Comparative Economic Growth 1950-85: Catch-Up and Convergence”, American Economic Association, 79(5), pp. 1010-1030.
  • ENDERS, Walter and Junsoo LEE; (2012), “A Unit Root Test Using a Fourier Series to Approximate Smooth Breaks”, Oxford Bulletin of Economics And Statistics, 74(4), pp. 574-599.
  • EVANS, Paul; (1998), “Using Panel Data to Evaluate Growth Theories”. International Economics Review, 39(2), pp. 295–306.
  • EUROPEAN COMISSION (EC); (2018), “A Digital Single Market Strategy for Europe”, http://eur-lex.europa.eu/legal content/EN/TXT/?uri=celex%3A52015DC0192, (Erişim Tarihi: 28.01.2018).
  • EZCURRA, Roberto and Pedro PASCUAL; (2005), “Is There Convergence in Income Inequality Levels among the European Regions?”, Applied Economics Letters, 12(12), pp. 763–767.
  • EZCURRA, Roberto and Pedro PASCUAL; (2009), “Convergence in Income Inequality in the United States: A Nonparametric Analysis”, Applied Economics Letters, 16(13), pp. 1365–1368.
  • GALLANT, A. Ronald; (1981), “On the Basis in Flexible Functional Form and an Essentially Unbiased Form: The Flexible Fourier Form”, Journal of Econometrics, 15(2), pp. 211-245.
  • GOMES, Fábio; (2007), “Convergence in Income Inequality: The Case of Brazilian Municipalities”, Economics Bulletin, 15(15), pp. 1–9.
  • HADRI, Kaddour; (2000), “Testing for Stationarity in Heterogeneous Panel Data”, The Econometrics Journal, 3(2), pp. 148-161.
  • HARRIS, Richard D.F. and Elias TZAVALIS; (1999), “Inference for Unit Roots in Dynamic Panels the Time Dimension in Fixed”, Journal of Econometrics, 91(2), pp. 201–226.
  • HURLIN, Christophe; (2010), "What would Nelson and Plosser Find had they used Panel Unit Root Tests?", Applied Economics, 42(10-12), pp. 1515-1531.
  • IM, Kyung So, PESARAN, M.Hashem and Yongcheol SHIN; (2003), "Testing for Unit Roots in Heterogeneous Panels", Journal of Econometrics, 115(1), pp. 53-74.
  • ISLAM, Nazrul; (2003), “What have we Learnt from the Convergence Debate?”, Journal of Economic Surveys, 17(3), pp. 309-362.
  • KAPETANIOS, George, Yongcheol SHIN and Andy SNELL; (2003), “Testing for a Unit Root in the Nonlinear STAR Framework”, Journal of Econometrics, 112(2), pp. 359–379.
  • KING, Alan and Carlyn RAMLOGAN-DOBSON; (2015), “International Income Convergence: is Latin America actually Different?”, Economic Modelling, 49(C), pp. 212-222.
  • KWIATKOWSKI, Denis, Peter C. B. PHILLIPS, Peter SCHMIDT and Yongcheol SHIN; (1992), “Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root: how Sure are we that Economic Time Series Have a Unit Root?”, Journal of Econometrics, 54(1-3), pp. 159–178.
  • LEVIN, Andrew, Chien-Fu LIN and Chia-Shang James CHU; (2002), "Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties", Journal of Econometrics, 108(1), pp. 1-24.
  • LIN, Pei-Chien and Ho-Chuan HUANG; (2011), “Convergence in Income Inequality? Evidence from Panel Unit Root Tests with Structural Breaks”, Empirical Economics, 43(1), pp. 153-174.
  • MADDALA, G. S. and In Moo KIM; (1998), Unit Roots, Cointegration and Structural Change, Cambridge University Press: Cambridge.
  • MADDALA, G.S. and Shaowen WU; (1999), “A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test”, Oxford Bulletin of Economics and Statistics, 61(0), pp. 631–652.
  • MANKIW, N. Gregory, David ROMER and David N. WEIL; (1992), “A Contributıon to The Empirics of Economic Growth”, The Quarterly Journal of Economics, 107(2), pp. 407-437.
  • MOON, Hyungsik R. and Benoit PERRON; (2004), “Testing for a Unit Root in Panels with Dynamic Factors”, Journal of Econometrics, 122(1), pp. 81-126.PANIZZA, Ugo; (2001), “Convergence in Income Inequality”, Journal of Income Distribution, 10, pp. 5–12.
  • PERRON, Pierre; (1989), “The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis”, Econometrica, 57(6), pp. 1361-1401.
  • PESARAN, M. Hashem; (2007), “A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence”, Journal of Applied Econometrics, 22(2), pp. 265-312.
  • PHILLIPS, Peter C.B. and Pierre PERRON; (1988), “Testing for a Unit Root in Time Series Regression”, Biometrika, 75(2), pp. 335–346.
  • PHILLIPS, Peter C.B. and Donggyu SUL; (2003), “Dynamic Panel Estimation and Homogeneity Testing under Cross Section Dependence”, Econometrics Journal, 6(1), pp. 217-259.
  • QUAH, Danny; (1993), “Galton's Fallacy and Tests of the Convergence Hypothesis”, Scandinavian Journal of Economics, 95(4), pp. 427-43.
  • RAVALLION, Martin; (2003), “Inequality Convergence”, Economics Letters, 80(3), pp. 351–356.
  • SALA-I-MARTIN, Xavier; (1996), “The Classical Approach to Convergence Analysis”, The Economic Journal, 106(437), pp. 1019-1036.
  • SEYİDOĞLU, Halil; (2015), Uluslararası İktisat Teori Politika ve Uygulama, Güzem Cam Yayınları, Geliştirilmiş 20. Baskı: İstanbul.
  • SOLT, Frederick; (2009), “Standardizing the World Income Inequality Database”, Social Science Quarterly, 90(2), pp. 231-242.
  • SOLT, Frederick; (2016), "The Standardized World Income Inequality Database." Social Science Quarterly, 97(5), pp. 1267-1281.
  • STOLPER, F. Wolfgang and Paul A. SAMUELSON; (1941), “Protection and Real Wages”, Review of Economic Studies, 9(1), pp. 58-73.
  • TSELIOS, Vassilis; (2009), “Growth and Convergence in Income per Capita and Income Inequality in the Regions of the EU”, Spatial Economic Analysis, 4(3), pp. 343–370.
  • UCAR, Nuri and Tolga OMAY; (2009), “Testing for Unit Root in Nonlinear Heterogeneous Panels”, Economics Letters, 104(1), pp. 5–8.

Convergence in Central and Eastern European countries income redistribution: Evidence from SPSM method

Year 2019, Issue: 54, 343 - 366, 31.12.2019
https://doi.org/10.18070/erciyesiibd.532758

Abstract

This study is to investigate whether income inequality in nine Central
and Eastern European (CEE) countries are converging or diverging
 using the nonlinear panel unit root tests Sequential
Panel Selection Method (SPSM) 
over the
period 1989 to 2015. We 
used the SPSM procedure that proposed by
Chortareas and Kapetanios (2009) using 
Panel
KSS unit root test (developed by Ucar and Omay (2009)) 
with a
Fourier function in this paper. The SPSM is a competent method which controls
for structural breaks, nonlinearity, heterogeneity and cross-section
dependency. The empirical analysis of conventional unit root tests shows that
income inequality is stationary or convergence for CEE countries. On the other
hand, the empirical results from the SPSM also point out that the income
distribution convergence holds true for nine CEE countries in the period of
1989 to 2015. The results show that income inequality converges even if control
is provided for structural breaks, non-linearity, heterogeneity and cross-sectional
dependence. Countries converge to a common level of income inequality. Our
findings have some significant policy implications for macroeconomic policy,
modelling and forecasting for these CEE countries.

References

  • BAI, By Jushan and Serena NG; (2005), "Tests for Skewness, Kurtosis, and Normality for Time Series Data", Journal of Busines & Economic Statistics, 23(1), pp. 49-60.
  • BALTAGI, Badi H; (2008), Econometric Analysis of Panel Data (Fourth Edition). West Sussex: John Wiley & Sons.
  • BARRO, Robert J; (1991), “Economic Growth in a Cross Section of Countries”, The Quarterly Journal of Economics, 106(2), pp. 407-443.
  • BARRO, Robert J. and Xavier SALA-I MARTIN; (1991), “Convergence across States and Regions”, Brookings Papers on Economic Activity, 1, pp. 107-182.
  • BARRO, Robert J. and Xavier SALA-I MARTIN; (1992), “Convergence”, The Journal of Political Economy, 100(2), pp. 223-251.
  • BAUMOL, William J; (1986), “Productivity Growth, Convergence, and Welfare: What the Long-Run Data Show”, The American Economic Review, 76(5), pp. 1072-1085.
  • BECKER, Ralf, Walter ENDERS and Junsoo LEE; (2006), “A Stationarity Test in The Presence of An Unknown Number Of Smooth Breaks”, Journal Of Time Series Analysis, 27(3), pp. 381-409.
  • BÉNABOU, Roland; (1996), “Inequality and Growth”, in Ben S. Bernanke, & J. J. Rotemberg (Ed.), NBER Macroeconomics Annual, Vol. 11, Cambridge: MIT Press, pp.11-74.
  • BERNARD, Andrew B. and Steven N. DURLAUF; (1996), “Interpreting Tests of The Convergence Hypothesis”, Journal of Econometrics 71(1-2), pp. 161-173.
  • BREITUNG, Jörg; (2000), "The Local Power of Some Unit Root Tests for Panel Data". Humboldt University. Institute of Statistics and Econometrics. http://edoc.hu-berlin.de/series/sfb-373-papers/1999-69/PDF/69.pdf, (Erişim Tarihi: 20.01.2018), pp. 1-40.
  • BLEANEY, Michael and Akira NISHIYAMA; (2003), “Convergence in Income Inequality: Differences between Advanced and Developing Countries”, Economics Bulletin, 4(22), pp. 1–10.
  • CHAMBERS, Dustin and Shatakshee DHONGDE; (2016), “Convergence in Income Distributions: Evidence from a Panel of Countries”, Economic Modelling, 59, pp. 262-270.
  • CHAMBERS, Dustin and Shatakshee DHONGDE; (2017), “Are Countries Becoming Equally Unequal?, Empirical Economics, 53(4), pp. 1323–1348.
  • CHEN, Yang, Hsu-Ling CHANG and Chi-Wei SU; (2016), “Does real wage converge in China?”, Springer, 11(1), 77-93.
  • CHOI, In; (2002), "Combination Unit Root Tests for Cross Sectionally Correlated Panels". mimeo, Hong Kong University of Science and Technology, pp. 1-26.
  • CHORTAREAS, Georgios and George KAPETANIOS; (2009), “Getting PPP Right: Identifying Mean-Reverting Real Exchange Rates in Panels”, Journal of Banking and Finance, 33(2), pp. 390–404.
  • CHRISTOPOULOS, Dimitris and Miguel LE´ON-LEDESMA; (2010), “Revisiting The Real Wages–Unemployment Relationship. New Results From Non-Linear Models”, Bulletin of Economic Research, 62(1), pp. 79-96.
  • CUARESMA, Jesus Crespo, Doris-Ritzberger GRUNWALD, and Maria Antoinette SILGONER; (2008), “Growth, Convergence and EU Membership”, Applied Economics, 40(5), pp. 643–656.
  • DICKEY, David A. and Wayne A. FULLER; (1981), “Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root”, Econometrica, 49(4), pp. 1057–1072.
  • DOWRICK, Steve and Duc-Tho NGUYEN; (1989), “OECD Comparative Economic Growth 1950-85: Catch-Up and Convergence”, American Economic Association, 79(5), pp. 1010-1030.
  • ENDERS, Walter and Junsoo LEE; (2012), “A Unit Root Test Using a Fourier Series to Approximate Smooth Breaks”, Oxford Bulletin of Economics And Statistics, 74(4), pp. 574-599.
  • EVANS, Paul; (1998), “Using Panel Data to Evaluate Growth Theories”. International Economics Review, 39(2), pp. 295–306.
  • EUROPEAN COMISSION (EC); (2018), “A Digital Single Market Strategy for Europe”, http://eur-lex.europa.eu/legal content/EN/TXT/?uri=celex%3A52015DC0192, (Erişim Tarihi: 28.01.2018).
  • EZCURRA, Roberto and Pedro PASCUAL; (2005), “Is There Convergence in Income Inequality Levels among the European Regions?”, Applied Economics Letters, 12(12), pp. 763–767.
  • EZCURRA, Roberto and Pedro PASCUAL; (2009), “Convergence in Income Inequality in the United States: A Nonparametric Analysis”, Applied Economics Letters, 16(13), pp. 1365–1368.
  • GALLANT, A. Ronald; (1981), “On the Basis in Flexible Functional Form and an Essentially Unbiased Form: The Flexible Fourier Form”, Journal of Econometrics, 15(2), pp. 211-245.
  • GOMES, Fábio; (2007), “Convergence in Income Inequality: The Case of Brazilian Municipalities”, Economics Bulletin, 15(15), pp. 1–9.
  • HADRI, Kaddour; (2000), “Testing for Stationarity in Heterogeneous Panel Data”, The Econometrics Journal, 3(2), pp. 148-161.
  • HARRIS, Richard D.F. and Elias TZAVALIS; (1999), “Inference for Unit Roots in Dynamic Panels the Time Dimension in Fixed”, Journal of Econometrics, 91(2), pp. 201–226.
  • HURLIN, Christophe; (2010), "What would Nelson and Plosser Find had they used Panel Unit Root Tests?", Applied Economics, 42(10-12), pp. 1515-1531.
  • IM, Kyung So, PESARAN, M.Hashem and Yongcheol SHIN; (2003), "Testing for Unit Roots in Heterogeneous Panels", Journal of Econometrics, 115(1), pp. 53-74.
  • ISLAM, Nazrul; (2003), “What have we Learnt from the Convergence Debate?”, Journal of Economic Surveys, 17(3), pp. 309-362.
  • KAPETANIOS, George, Yongcheol SHIN and Andy SNELL; (2003), “Testing for a Unit Root in the Nonlinear STAR Framework”, Journal of Econometrics, 112(2), pp. 359–379.
  • KING, Alan and Carlyn RAMLOGAN-DOBSON; (2015), “International Income Convergence: is Latin America actually Different?”, Economic Modelling, 49(C), pp. 212-222.
  • KWIATKOWSKI, Denis, Peter C. B. PHILLIPS, Peter SCHMIDT and Yongcheol SHIN; (1992), “Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root: how Sure are we that Economic Time Series Have a Unit Root?”, Journal of Econometrics, 54(1-3), pp. 159–178.
  • LEVIN, Andrew, Chien-Fu LIN and Chia-Shang James CHU; (2002), "Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties", Journal of Econometrics, 108(1), pp. 1-24.
  • LIN, Pei-Chien and Ho-Chuan HUANG; (2011), “Convergence in Income Inequality? Evidence from Panel Unit Root Tests with Structural Breaks”, Empirical Economics, 43(1), pp. 153-174.
  • MADDALA, G. S. and In Moo KIM; (1998), Unit Roots, Cointegration and Structural Change, Cambridge University Press: Cambridge.
  • MADDALA, G.S. and Shaowen WU; (1999), “A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test”, Oxford Bulletin of Economics and Statistics, 61(0), pp. 631–652.
  • MANKIW, N. Gregory, David ROMER and David N. WEIL; (1992), “A Contributıon to The Empirics of Economic Growth”, The Quarterly Journal of Economics, 107(2), pp. 407-437.
  • MOON, Hyungsik R. and Benoit PERRON; (2004), “Testing for a Unit Root in Panels with Dynamic Factors”, Journal of Econometrics, 122(1), pp. 81-126.PANIZZA, Ugo; (2001), “Convergence in Income Inequality”, Journal of Income Distribution, 10, pp. 5–12.
  • PERRON, Pierre; (1989), “The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis”, Econometrica, 57(6), pp. 1361-1401.
  • PESARAN, M. Hashem; (2007), “A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence”, Journal of Applied Econometrics, 22(2), pp. 265-312.
  • PHILLIPS, Peter C.B. and Pierre PERRON; (1988), “Testing for a Unit Root in Time Series Regression”, Biometrika, 75(2), pp. 335–346.
  • PHILLIPS, Peter C.B. and Donggyu SUL; (2003), “Dynamic Panel Estimation and Homogeneity Testing under Cross Section Dependence”, Econometrics Journal, 6(1), pp. 217-259.
  • QUAH, Danny; (1993), “Galton's Fallacy and Tests of the Convergence Hypothesis”, Scandinavian Journal of Economics, 95(4), pp. 427-43.
  • RAVALLION, Martin; (2003), “Inequality Convergence”, Economics Letters, 80(3), pp. 351–356.
  • SALA-I-MARTIN, Xavier; (1996), “The Classical Approach to Convergence Analysis”, The Economic Journal, 106(437), pp. 1019-1036.
  • SEYİDOĞLU, Halil; (2015), Uluslararası İktisat Teori Politika ve Uygulama, Güzem Cam Yayınları, Geliştirilmiş 20. Baskı: İstanbul.
  • SOLT, Frederick; (2009), “Standardizing the World Income Inequality Database”, Social Science Quarterly, 90(2), pp. 231-242.
  • SOLT, Frederick; (2016), "The Standardized World Income Inequality Database." Social Science Quarterly, 97(5), pp. 1267-1281.
  • STOLPER, F. Wolfgang and Paul A. SAMUELSON; (1941), “Protection and Real Wages”, Review of Economic Studies, 9(1), pp. 58-73.
  • TSELIOS, Vassilis; (2009), “Growth and Convergence in Income per Capita and Income Inequality in the Regions of the EU”, Spatial Economic Analysis, 4(3), pp. 343–370.
  • UCAR, Nuri and Tolga OMAY; (2009), “Testing for Unit Root in Nonlinear Heterogeneous Panels”, Economics Letters, 104(1), pp. 5–8.
There are 54 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Murat Belke 0000-0002-3299-7162

Harun Kaya 0000-0003-4795-3872

Süleyman Bolat 0000-0001-5635-7322

Publication Date December 31, 2019
Acceptance Date August 22, 2019
Published in Issue Year 2019 Issue: 54

Cite

APA Belke, M., Kaya, H., & Bolat, S. (2019). Merkezi ve Doğu Avrupa ülkelerinde gelir dağılımı yakınsaması: SPSM yönteminden kanıtlar. Erciyes Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi(54), 343-366. https://doi.org/10.18070/erciyesiibd.532758

TRDizinlogo_live-e1586763957746.pnggoogle-scholar.jpgopen-access-logo-1024x416.pngdownload.jpgqMV-nsBH.pngDRJI-500x190.jpgsobiad_2_0.pnglogo.pnglogo.png  arastirmax_logo.gif17442EBSCOhost_Flat.png?itok=f5l7Nsj83734-logo-erih-plus.jpgproquest-300x114.jpg

ERÜ İktisadi ve İdari Bilimler Fakültesi Dergisi 2021 | iibfdergi@erciyes.edu.tr

Bu eser Creative Commons Atıf-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. 

 88x31.png