Research Article
BibTex RIS Cite

Hidroelektrik Enerji Tüketiminin Çevre Üzerine Etkisinin Sürekli Dalgacık Uyumu Modeli ile Araştırılması: ABD Örneği

Year 2020, Issue: 55, 263 - 284, 27.04.2020
https://doi.org/10.18070/erciyesiibd.565196

Abstract

Küresel ısınma en önemli çevre sorunlarının başında gelmektedir. Küresel ısınmanın temel nedenlerinden birisi, fosil yakıt kullanımı neticesinde oluşan CO2 emisyonudur. Hem bu soruna çözüm getirmek hem de enerji kaynaklarının kısıtlı olması, toplumları fosil yakıt kullanımına alternatif olabilecek enerji kaynaklarını kullanmaya yöneltmiştir. Bu durum ise yenilenebilir enerjilerin CO2 emisyonu üzerindeki etkilerinin belirlenmesini gündeme getirmiştir.
Bu çalışmada yenilenebilir enerji kaynaklarından, hidroelektrik enerji kullanımı ile CO2 emisyonu arasındaki ilişki, ABD için incelenmiştir. Araştırmada analiz yöntemi olarak dalgacık uyumu (wavelet coherence) yöntemlerinden birisi olan Morlet dalgacık uyumu modeli kullanılmıştır. Analiz değişkenleri; hidroelektrik enerji tüketimi, toplam biyokütle enerji tüketimi, sanayi üretim endeksi (SÜE), toplam fosil yakıt tüketimi, nükleer enerji tüketimi ve toplam CO2 emisyonu şeklinde belirlenmiştir. Analiz neticesinde hidroelektrik kullanımının (TBiyokütle, TFosil, Nükleer ve SÜE kontrol değişken iken) 2015:1-2015:12 döneminde, CO2 emisyonunu azalttığı tespit edilmiştir.

Supporting Institution

Erciyes Üniversitesi BAP Doktora

Project Number

SDK-2017-7332

References

  • Acaroğlu, M. (2007), Alternatif enerji kaynakları, 2. Baskı, Nobel Yayıncılık, Ankara.
  • Addison, P. S. (2002), The illustrated wavelet transform handbook introductory theory and application in science. Engineering. Medicine and Finance, (1st Edition). Taylor&Francis Group, CRS Press.
  • Aguiar-Conraria, L., Magalhães P.C. ve Soares, M.J. (2013), The nationalization of electoral cycles in the United States: a wavelet analysis. Public Choice, 156 (3-4), 387–408.
  • Akhmat, G., K. Zaman, T. Shukui, D. İrfan ve M. M. Khan, (2014), Does energy consumption contribute to environmental pollutants? evidence from SAARC countries. Environmental Science and Pollution Research, 21 (9), 5940-5951.
  • Ang, J. B. (2007). CO2 emissions energy consumption and output in France. Energy Policy, 35, 4772-4778.
  • Apergis, N., E. J. Payne, K. Menyah ve Rufael, W. Y. (2010). On the cousal dynamics between emissions, nuclear energy, renewable energy and economic growth. Ecological Economics, 69, 2255-2260.
  • Arı, N., Özen, Ş. ve Özen, Ö.H. (2008), Dalgacık Teorisi (Wavelet). Ankara: Palme.
  • Arouri, M. E., A. B. Youssef, M’henni H., ve Rault, C. (2012). Energy consumption, economic growth and co2 emissions in Middle East and North African Countries. Energy Policy, 45, 342-345.
  • Bayraç, H. N. (2011). Enerji Kullanımının Küresel Isınmaya Etkisi ve Önleyici Politikalar. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 2(11), 229-260. http://dergipark.gov.tr/download/article-file/113309.
  • Bhattacharjee, A. (2012). Everything You Need to Know About The Types of Renewable Energy, Brainmass Inc.
  • Bilgili, F. (2012). The impact of biomass consumption on co2 emissions: cointegration analyses with regime shifts. Renewable and Sustainable Energy Reviews, 16, 5349-5354.
  • Bilgili, F., İ. Öztürk, E. Koçak, Ü. Bulut, Y. Pamuk, E. Muğaloğlu ve Bağlıtaş, H.H. (2016). The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach. Environmental Science and Pollution Research, 23 (19), 19043-19061.
  • Burrus, C.S., Gopinath, R.A. ve Guo, H. (1998). Introduction to wavelets and wavelet transforms a primer. New Jersey: Prentice Hall.
  • EIA 2017, U.S. Energy Information Administration, Independent Statistics and Analysis, International https://www.eia.gov/totalenergy/data/ monthly/index.php (Erişim Tarihi: 11.12.2017).
  • EPA, U.S. Environmental Protection Agency (2015), Inventory of US. Greenhouse Gas Emissions and Sinks:1990-2013, USA.
  • Europa 2018, Fossil CO2 & GHG emissions of all world countries, 2017. http ://edgar.jrc.ec.europa.eu/overview.php?v=CO2andGHG1970-2016&sort= des9.
  • Farge, M. (1992). Wavelet transforms and their applications to turbulence. Annual Reviews, 24, 395-457.
  • Gençay R., Selçuk, F. ve Whitcher, B. (2002). An ıntroduction to wavelets and other filtering methods in finance and economics, San Diego: Academic.
  • Graps, A. (1995). An ıntroduction to wavelets. IEEE Computational Science and Engineering, 2, 50-51.
  • Gul, S., X. Zou, C. H. Hassan, M. Azam ve Zaman, K. (2015). Casual nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach. Environmental Science Pollution Research, 22 (24), 19773-19785.
  • Halıcıoğlu, F. (2009). An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy, 37, 1156-1164.
  • Hossain, M. S. (2011). Panel estimation for CO2 emissions, energy consumption, economic growth, trade, openness and urbanization of newly industrialized countries. Energy Policy, 39, 6991-6999.
  • Hudgins L., Friehe CA. ve Mayer ME. (1993). Wavelet transform and atmospheric turbulence. Physical Review Letters, 71 (20), 3279-3282.
  • IPCC. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel On Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)], Cambridge University Press, Camridge, United Kingdom and New York, NY, USA, 2013.
  • Karl, TR., Melillo, JM ve Peterson, TC. (2009). Global climate change impacts in the United States: a state of knowledge report. Cambridge University Press, Cambridge.
  • Kuşkaya, S.ve Gençoğlu, P. (2017). OECD ülkelerinin 1995-2015 yılları itibariyle sera gazı emisyonları açısından karşılaştırılması: istatistiksel bir analiz. International Journal of Disciplines Economics & Administrative Sciences Studies, 3 (3), 177-188.
  • Lee, S. and Chang, W. O. (2016). Causal relationship of energy consumption, price and CO2 emissions in the us-building sector. Resources, Conservation and Recycling, 107, 220-226.
  • Liaskas, K., Mavrotas, G., Mandaroke, M. ve Diakoulaki, D. (2000). Decomposition of industrial CO2 emissions: the case of European Union. Energy Economics, 22, 383-394.
  • Mitchell, J. F.B. (1989). The Greenhouse Effect and Climate Change. Reviews of Geophysics, 27 (1), 115-139. doi: https://doi.org/10.1029/RG027i001p00115.
  • NewScientist, (2018), Hydroelectric power's dirty secret revealed, https://www.newscientist.com/article/mg18524884-100-hydroelectric-powers-dirty-secret-revealed/
  • Sorensen, T.C. (2016). Global Warming and Impacts on Climate of India, https://www.researchgate.net/profile/S_Sarvade/post/What_is_the_impact_of_global_warming_on_the_environment/attachment/59d64bf079197b80779a5db0/AS%3A482366322941955%401492016501665/download/3113.pdf.pdf .
  • Tuna, M. (2000). Çevresel Sorunların Küreselleşmesi. Muğla Üniversitesi SBE Dergisi, 1(2), 1-16. http://dergipark.gov.tr/download/article-file/217462.
  • Utlu, Z. (2007). Evaluation of biodiesel fuel obtained from waste cooking oil. Energy Sources, Part A, 29, 1295-1304.
  • Vacha, L. ve Barunik, J. (2012). Co-movement of energy commodities revisited: evidence from wavelet coherence analysis. Energy Economics, 34 (1), 241-247.
  • Zhao, G., Jiang, D., Diao, J. ve Qian, L. (2004). Application of wavelet time-frequency analysis on fault diagnosis for steam turbine, In:5th International Conference of Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques, France, CETIM.

Investigation of The Effect of Hydroelectric Energy Consumption on The Envıronment by Using A Continuous Wavelet Coherence Model: Case of Usa

Year 2020, Issue: 55, 263 - 284, 27.04.2020
https://doi.org/10.18070/erciyesiibd.565196

Abstract

Global warming is the most important environmental problems. The most important reason for global warming is the CO2 emission resulting from the use of fossil fuels. Both the solution to this problem and the limited resources of energy have led the societies to use the energies that could be an alternative to the use of fossil fuels. This situation necessitated the determination of the effects of renewable energies on CO2 emissions.

In this paper, the relationship between the carbon dioxide (CO2) emission of hydroelectric energy use, which is one of the renewable energy source, has been examined for USA. Morlet wavelet coherence model which is one of the wavelet coherence methods has been used as the method of analysis. In the analysis, hydroelectric energy consumption, total biomass energy consumption, industrial production index, total fossil fuel consumption, nuclear energy consumption and total CO2 emission were preferred as variables. As a result of the analysis, it was determined that the use of hydroelectricity (while TBiomass, TFossil, Nuclear and IP were control variable) decreased the CO2 emission in the 1 ~ 3 frequency band, 2015: 1-2015: 12 period. In this context, it is foreseen that more efficient production can be achieved from hydroelectric energy in terms of CO2 emission.

Project Number

SDK-2017-7332

References

  • Acaroğlu, M. (2007), Alternatif enerji kaynakları, 2. Baskı, Nobel Yayıncılık, Ankara.
  • Addison, P. S. (2002), The illustrated wavelet transform handbook introductory theory and application in science. Engineering. Medicine and Finance, (1st Edition). Taylor&Francis Group, CRS Press.
  • Aguiar-Conraria, L., Magalhães P.C. ve Soares, M.J. (2013), The nationalization of electoral cycles in the United States: a wavelet analysis. Public Choice, 156 (3-4), 387–408.
  • Akhmat, G., K. Zaman, T. Shukui, D. İrfan ve M. M. Khan, (2014), Does energy consumption contribute to environmental pollutants? evidence from SAARC countries. Environmental Science and Pollution Research, 21 (9), 5940-5951.
  • Ang, J. B. (2007). CO2 emissions energy consumption and output in France. Energy Policy, 35, 4772-4778.
  • Apergis, N., E. J. Payne, K. Menyah ve Rufael, W. Y. (2010). On the cousal dynamics between emissions, nuclear energy, renewable energy and economic growth. Ecological Economics, 69, 2255-2260.
  • Arı, N., Özen, Ş. ve Özen, Ö.H. (2008), Dalgacık Teorisi (Wavelet). Ankara: Palme.
  • Arouri, M. E., A. B. Youssef, M’henni H., ve Rault, C. (2012). Energy consumption, economic growth and co2 emissions in Middle East and North African Countries. Energy Policy, 45, 342-345.
  • Bayraç, H. N. (2011). Enerji Kullanımının Küresel Isınmaya Etkisi ve Önleyici Politikalar. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 2(11), 229-260. http://dergipark.gov.tr/download/article-file/113309.
  • Bhattacharjee, A. (2012). Everything You Need to Know About The Types of Renewable Energy, Brainmass Inc.
  • Bilgili, F. (2012). The impact of biomass consumption on co2 emissions: cointegration analyses with regime shifts. Renewable and Sustainable Energy Reviews, 16, 5349-5354.
  • Bilgili, F., İ. Öztürk, E. Koçak, Ü. Bulut, Y. Pamuk, E. Muğaloğlu ve Bağlıtaş, H.H. (2016). The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach. Environmental Science and Pollution Research, 23 (19), 19043-19061.
  • Burrus, C.S., Gopinath, R.A. ve Guo, H. (1998). Introduction to wavelets and wavelet transforms a primer. New Jersey: Prentice Hall.
  • EIA 2017, U.S. Energy Information Administration, Independent Statistics and Analysis, International https://www.eia.gov/totalenergy/data/ monthly/index.php (Erişim Tarihi: 11.12.2017).
  • EPA, U.S. Environmental Protection Agency (2015), Inventory of US. Greenhouse Gas Emissions and Sinks:1990-2013, USA.
  • Europa 2018, Fossil CO2 & GHG emissions of all world countries, 2017. http ://edgar.jrc.ec.europa.eu/overview.php?v=CO2andGHG1970-2016&sort= des9.
  • Farge, M. (1992). Wavelet transforms and their applications to turbulence. Annual Reviews, 24, 395-457.
  • Gençay R., Selçuk, F. ve Whitcher, B. (2002). An ıntroduction to wavelets and other filtering methods in finance and economics, San Diego: Academic.
  • Graps, A. (1995). An ıntroduction to wavelets. IEEE Computational Science and Engineering, 2, 50-51.
  • Gul, S., X. Zou, C. H. Hassan, M. Azam ve Zaman, K. (2015). Casual nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach. Environmental Science Pollution Research, 22 (24), 19773-19785.
  • Halıcıoğlu, F. (2009). An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy, 37, 1156-1164.
  • Hossain, M. S. (2011). Panel estimation for CO2 emissions, energy consumption, economic growth, trade, openness and urbanization of newly industrialized countries. Energy Policy, 39, 6991-6999.
  • Hudgins L., Friehe CA. ve Mayer ME. (1993). Wavelet transform and atmospheric turbulence. Physical Review Letters, 71 (20), 3279-3282.
  • IPCC. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel On Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)], Cambridge University Press, Camridge, United Kingdom and New York, NY, USA, 2013.
  • Karl, TR., Melillo, JM ve Peterson, TC. (2009). Global climate change impacts in the United States: a state of knowledge report. Cambridge University Press, Cambridge.
  • Kuşkaya, S.ve Gençoğlu, P. (2017). OECD ülkelerinin 1995-2015 yılları itibariyle sera gazı emisyonları açısından karşılaştırılması: istatistiksel bir analiz. International Journal of Disciplines Economics & Administrative Sciences Studies, 3 (3), 177-188.
  • Lee, S. and Chang, W. O. (2016). Causal relationship of energy consumption, price and CO2 emissions in the us-building sector. Resources, Conservation and Recycling, 107, 220-226.
  • Liaskas, K., Mavrotas, G., Mandaroke, M. ve Diakoulaki, D. (2000). Decomposition of industrial CO2 emissions: the case of European Union. Energy Economics, 22, 383-394.
  • Mitchell, J. F.B. (1989). The Greenhouse Effect and Climate Change. Reviews of Geophysics, 27 (1), 115-139. doi: https://doi.org/10.1029/RG027i001p00115.
  • NewScientist, (2018), Hydroelectric power's dirty secret revealed, https://www.newscientist.com/article/mg18524884-100-hydroelectric-powers-dirty-secret-revealed/
  • Sorensen, T.C. (2016). Global Warming and Impacts on Climate of India, https://www.researchgate.net/profile/S_Sarvade/post/What_is_the_impact_of_global_warming_on_the_environment/attachment/59d64bf079197b80779a5db0/AS%3A482366322941955%401492016501665/download/3113.pdf.pdf .
  • Tuna, M. (2000). Çevresel Sorunların Küreselleşmesi. Muğla Üniversitesi SBE Dergisi, 1(2), 1-16. http://dergipark.gov.tr/download/article-file/217462.
  • Utlu, Z. (2007). Evaluation of biodiesel fuel obtained from waste cooking oil. Energy Sources, Part A, 29, 1295-1304.
  • Vacha, L. ve Barunik, J. (2012). Co-movement of energy commodities revisited: evidence from wavelet coherence analysis. Energy Economics, 34 (1), 241-247.
  • Zhao, G., Jiang, D., Diao, J. ve Qian, L. (2004). Application of wavelet time-frequency analysis on fault diagnosis for steam turbine, In:5th International Conference of Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques, France, CETIM.
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Sevda Kuşkaya 0000-0003-4527-5713

Faik Bilgili 0000-0003-4138-6897

Project Number SDK-2017-7332
Publication Date April 27, 2020
Acceptance Date February 19, 2020
Published in Issue Year 2020 Issue: 55

Cite

APA Kuşkaya, S., & Bilgili, F. (2020). Hidroelektrik Enerji Tüketiminin Çevre Üzerine Etkisinin Sürekli Dalgacık Uyumu Modeli ile Araştırılması: ABD Örneği. Erciyes Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi(55), 263-284. https://doi.org/10.18070/erciyesiibd.565196

Ethical Principles and Ethical Guidelines

The Journal of Erciyes University Faculty of Economics and Administrative Sciences places great emphasis on publication ethics, which serve as a foundation for the impartial and reputable advancement of scientific knowledge. In this context, the journal adopts a publishing approach aligned with the ethical standards set by the Committee on Publication Ethics (COPE) and is committed to preventing potential malpractice. The following ethical responsibilities, established based on COPE’s principles, are expected to be upheld by all stakeholders involved in the publication process (authors, readers and researchers, publishers, reviewers, and editors).

Ethical Responsibilities of Editors
Make decisions on submissions based on the quality and originality of the work, its alignment with the journal's aims and scope, and the reviewers’ evaluations, regardless of the authors' religion, language, race, ethnicity, political views, or gender.
Respond to information requests from readers, authors, and reviewers regarding the publication and evaluation processes.
Conduct all processes without compromising ethical standards and intellectual property rights.
Support freedom of thought and protect human and animal rights.
Ensure the peer review process adheres to the principle of double-blind peer review.
Take full responsibility for accepting, rejecting, or requesting changes to a manuscript and ensure that conflicts of interest among stakeholders do not influence these decisions.
Ethical Responsibilities of Authors
Submitted works must be original. When utilizing other works, proper and complete citations and/or references must be provided.
A manuscript must not be under review by another journal simultaneously.
Individuals who have not contributed to the experimental design, implementation, data analysis, or interpretation should not be listed as authors.
If requested during the review process, datasets used in the manuscript must be provided to the editorial board.
If a significant error or mistake is discovered in the manuscript, the journal’s editorial office must be notified.
For studies requiring ethical committee approval, the relevant document must be submitted to the journal. Details regarding the ethical approval (name of the ethics committee, approval document number, and date) must be included in the manuscript.
Changes to authorship (e.g., adding or removing authors, altering the order of authors) cannot be proposed after the review process has commenced.
Ethical Responsibilities of Reviewers
Accept review assignments only in areas where they have sufficient expertise.
Agree to review manuscripts in a timely and unbiased manner.
Ensure confidentiality of the reviewed manuscript and not disclose any information about it, during or after the review process, beyond what is already published.
Refrain from using information obtained during the review process for personal or third-party benefit.
Notify the journal editor if plagiarism or other ethical violations are suspected in the manuscript.
Conduct reviews objectively and avoid conflicts of interest. If a conflict exists, the reviewer should decline the review.
Use polite and constructive language during the review process and avoid personal comments.
Publication Policy
The Journal of Erciyes University Faculty of Economics and Administrative Sciences is a free, open-access, peer-reviewed academic journal that has been in publication since 1981. The journal welcomes submissions in Turkish and English within the fields of economics, business administration, public finance, political science, public administration, and international relations.

No submission or publication fees are charged by the journal.
Every submitted manuscript undergoes a double-blind peer review process and similarity/plagiarism checks via iThenticate.
Submissions must be original and not previously published, accepted for publication, or under review elsewhere.
Articles published in the journal can be cited under the Open Access Policy and Creative Commons license, provided proper attribution is given.
The journal is published three times a year, in April, August, and December. It includes original, high-quality, and scientifically supported research articles and reviews in its listed fields. Academic studies unrelated to these disciplines or their theoretical and empirical foundations are not accepted. The journal's languages are Turkish and English.

Submissions are first subject to a preliminary review for format and content. Manuscripts not meeting the journal's standards are rejected by the editorial board. Manuscripts deemed suitable proceed to the peer review stage.

Each submission is sent to at least two expert reviewers. If both reviews are favorable, the article is approved for publication. In cases where one review is positive and the other negative, the editorial board decides based on the reviews or may send the manuscript to a third reviewer.

Articles published in the journal are open access and can be cited under the Creative Commons license, provided proper attribution is made.