Research Article
BibTex RIS Cite

PORTFOLIO OPTIMISATION BASED ON ALTERNATIVE METHODS

Year 2021, Issue: 59, 333 - 358, 31.08.2021
https://doi.org/10.18070/erciyesiibd.881391

Abstract

In this study, the performances of four different portfolio optimisation methods consisting
of the Omega ratio, conditional value-at-risk (CVaR), maximum drawdown (MDD), and Markowitz
(1952) mean variance methods are compared using monthly data for the period fromJanuary 2000 to
September 2020. Portfolio optimisation methods are applied b y taking into account three different
targeted annual return rates. Sharpe ratio, Treynor ratio, Information ratio, Sortino ratio, Calmar ratio,
and Jensen’s alpha measure are used to evaluate the performance of portfolio optimisation methods.
The study findings indicate that the portfolio optimisation method based on the Omega ratio exhibits
the best performance for the period examined. However, findings also indicate that optimal portfolios
based on the Omega ratio contain significant concentration risk in addition to high market risk.

References

  • Almahdi, S., and Yang, S.Y. (2017). An adaptive portfolio trading system: A risk-return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown. Expert Systems With Applications, 87, 267–279.
  • Bernard, C., Vanduffel, S., and Ye, J. (2018). Optimal strategies under omega ratio. European Journal of Operational Research, 275 (2), 755-767.
  • Castro, J.G., Tito, E.A.H., Brandão,L.E.ET., and Gomes, L.L. (2019). Crypto-assets portfolio optimization under the omega measure. The Engineering Economist, 65 (2), 114-134.
  • Chang, T-J., Yang, S.C., and Chang, K-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36, 10529–10537.
  • Chekhlov, A., Uryasev,S., and Zabarankin, M. (2003). Portfolio Optimization With Drawdown Constraints.Pardalos, P.M., Migdalas, A. ve Baourakis,G. (Eds.). Supply Chain and Finance içinde (s. 209-228).London, England: World Scientific publishing Co.Pte.Ltd.
  • Çelengi, A. Z., Eğrioğlu,E., ve Çorba,B.Ş. (2015). İMKB 30 indeksini oluşturan hisse senetleri için parçacık sürü optimizasyonu yöntemlerine dayalı portföy optimizasyonu. Doğuş Üniversitesi Dergisi, 16(1), 25-33.
  • Dai, Z., and Wen, F. (2014). Robust CVaR-based portfolio optimization under a genal affine data perturbation uncertainty set. Journal of Computational Analysis and Applications, 16(1),93-103.
  • Deng, L., Ma, C., and Yang,W. (2011). Portfolio optimization via pair copula-GARCH-EVT-CVaR model. Systems Engineering Procedia, 2, 171 – 181.
  • Favre-Bulle, A., and Pache, S.(2003). The omega measure: Hedge fund portfolio optimization. (Unpublished MBF master’s thesis). University of Lausanne – Ecole Des Hec.
  • Fernandez, A., and Gomez , S. (2007). Portfolio selection using neural networks. Computers & Operations Research, 34, 1177-1191.
  • Gökgöz, E. (2006). Riske maruz değer (VaR) ve portföy optimizasyonu (1. Baskı) Ankara: Sermaye Piyasası Kurulu Yayınları, Yayın No: 190.
  • Gökmen, Y. (2009). Stokastik programlama ile optimal portföy oluşturma. (Yayınlanmamış Doktora Tezi). Gazi Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Grinold R. C. (1989). The fundamental law of active management. Journal of Portfolio Management, 15 (3), 30-37.
  • Jensen, M. C. (1968). The performance of mutual funds in the period 1945-1964. The Journal of Finance, 23 (2), 389-416.
  • Keating, C., and Shadwick, W. F. (2002). A universal performance measure. Journal of Performance Measurement, 6(3), 59–84.
  • Klega, D. (2013). My ventures are not in one bottom trusted: Comparative study to modern portfolio theory and Black-Litterman portfolio formation.( Unpublished Rigorosum Thesis). Charles University, Faculty of Social Sciences.
  • Lim, A.E.B., Shanthikumar, J.G., and Vahn, G-Y. (2011). Conditional value-at-risk in portfolio optimization: Coherent but fragile. Operations Research Letters, 39(3),163-171.
  • Ma, Y., Han, R., and Wang,W. (2021). Portfolio optimization with return prediction using deep learning and machine learning. Expert Systems with Applications,165(1),1139-73.
  • Magdon-Ismail, M., and Atiya, A. (2004). An analysis of the maximum drawdown risk measure. Risk Magazine, 17 (10): 99–102.
  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.
  • Mishra, A. K., Pisipati, S., and Vyas, I. (2011). An equilibrium approach for tactical asset allocation: Assessing Black-Litterman model to Indian stock market. Journal of Economics and International Finance, 3 (10), 553-563.
  • Najafi, A. A,. and Mushakhian, S. (2015). Multi-stage stochastic mean–semivariance–CVaR portfolio optimization under transaction costs. Applied Mathematics and Computation, 256, 445–458.
  • Özdemir, M. (2011). Genetik algoritma kullanılarak portföy seçimi. İktisat Isletme ve Finans, 26 (299), 43-66.
  • Receiz, A. and León, C.E. (2008). Efficient Portfolio Optimization in the Wealth Creation and Maximum Drawdown Space. Berkelaar, A., Coche, J. ve Nyholm, K. (Eds.). Interest Rate Models, Asset Allocation and Quantitative Techniques For Central Banks And Sovereıgn Wealth Funds içinde (s.1-23). Bogota, Colombia: Palgrave Macmillan.
  • Rejeb, A.B., and Boughrara, A.(2013). Financial liberalization and stock markets efficiency: New evidence from emerging economies. Emerging Markets Review, 17, 186–208.
  • Rockafellar, R.T., and Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–41.
  • Roy, A. D. (1952). Safety first and the holding of assets. Econometrica: Journal of the Econometric Society, 20 (3), 431-449.
  • Sharma, A., Utz, S., and Mehra, A. (2017). Omega-CVaR portfolio optimization and its worst case analysis. OR Spectrum, 39, 505–539.
  • Sharpe, W. F. (1966). Mutual fund performance. The Journal of Business, 39(S1), 119.
  • Solatikia, F., Kiliç, E ., and Weber, G.W. (2014). Fuzzy optimization for portfolio selectionbased on embedding theorem in fuzzy normed linear spaces. Organizacija, 47(2), 90-97.
  • Sortino F. A. (2000). Measuring risk: Upside-potential ratios vary by ınvestment style. Pensions and Investments, 28(22), 30–35.
  • Treynor, J. L. (1965). How to rate management of investment funds. Harvard Business Review, 43 (1), 63-75.
  • Uyar, U., ve Küçükşahin, H. (2017). Portföy seçiminde expected maximum drawdown yaklaşımı: BİST100-S&P500 Uygulaması. Business and Economics Research Journal, 8 (4), 727-748.
  • Uygurtürk, H., ve Korkmaz, T. (2015). Portföy optimizasyonunda markowitz modelinin kullanımı: bireysel emeklilik yatırım fonları üzerine bir uygulama. Muhasebe ve Finansman Dergisi,68, 67-82.
  • Yakut, E., ve Çankal, A. (2016). Çok amaçlı genetik algoritma ve hedef programlama metotlarını kullanarak hisse senedi portföy optimizasyonu: BİST 30’da bir uygulama. Business and Economics Research Journal, 7(2),43.62.
  • Young T. W. (1991). Calmar ratio: A smoother tool. Futures (Cedar Falls, Iowa), 20 (11),1-22.

ALTERNATİF YÖNTEMLERE DAYALI PORTFÖY OPTİMİZASYONU

Year 2021, Issue: 59, 333 - 358, 31.08.2021
https://doi.org/10.18070/erciyesiibd.881391

Abstract

Bu çalışmada koşullu riske maruz değer (Conditional value-at-risk, CVaR), maksimum düşüş oranı (Maximum drawndown, MDD), Omega rasyosu ve Markowitz (1952) ortalama-varyans yönteminden oluşan dört farklı portföy optimizasyon yönteminin performansları aylık veriler kullanılarak Ocak 2000 ile Eylül 2020 dönemi için karşılaştırılmıştır. Portföy optimizasyon yöntemleri hedeflenen üç farklı yıllık getiri oranı dikkate alınarak uygulanmıştır. Portföy optimizasyon yöntemlerinin performanslarının değerlendirilmesinde Sharpe rasyosu, Treynorrasyosu, Bilgi rasyosu, Sortino rasyosu, Calmar rasyosu ve Jensen (alfa) kriterinden yararlanılmıştır. Çalışma bulguları incelenen dönem için en iyi performansı Omega rasyosuna dayalı portföy optimizasyon yönteminin sergilediği sonucuna işaret etmektedir. Fakat, bulgular Omega rasyosuna dayalı portföylerin yoğunlaşma riskine ilaveten önemli oranda piyasa riski de içerdiğini göstermektedir.

References

  • Almahdi, S., and Yang, S.Y. (2017). An adaptive portfolio trading system: A risk-return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown. Expert Systems With Applications, 87, 267–279.
  • Bernard, C., Vanduffel, S., and Ye, J. (2018). Optimal strategies under omega ratio. European Journal of Operational Research, 275 (2), 755-767.
  • Castro, J.G., Tito, E.A.H., Brandão,L.E.ET., and Gomes, L.L. (2019). Crypto-assets portfolio optimization under the omega measure. The Engineering Economist, 65 (2), 114-134.
  • Chang, T-J., Yang, S.C., and Chang, K-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36, 10529–10537.
  • Chekhlov, A., Uryasev,S., and Zabarankin, M. (2003). Portfolio Optimization With Drawdown Constraints.Pardalos, P.M., Migdalas, A. ve Baourakis,G. (Eds.). Supply Chain and Finance içinde (s. 209-228).London, England: World Scientific publishing Co.Pte.Ltd.
  • Çelengi, A. Z., Eğrioğlu,E., ve Çorba,B.Ş. (2015). İMKB 30 indeksini oluşturan hisse senetleri için parçacık sürü optimizasyonu yöntemlerine dayalı portföy optimizasyonu. Doğuş Üniversitesi Dergisi, 16(1), 25-33.
  • Dai, Z., and Wen, F. (2014). Robust CVaR-based portfolio optimization under a genal affine data perturbation uncertainty set. Journal of Computational Analysis and Applications, 16(1),93-103.
  • Deng, L., Ma, C., and Yang,W. (2011). Portfolio optimization via pair copula-GARCH-EVT-CVaR model. Systems Engineering Procedia, 2, 171 – 181.
  • Favre-Bulle, A., and Pache, S.(2003). The omega measure: Hedge fund portfolio optimization. (Unpublished MBF master’s thesis). University of Lausanne – Ecole Des Hec.
  • Fernandez, A., and Gomez , S. (2007). Portfolio selection using neural networks. Computers & Operations Research, 34, 1177-1191.
  • Gökgöz, E. (2006). Riske maruz değer (VaR) ve portföy optimizasyonu (1. Baskı) Ankara: Sermaye Piyasası Kurulu Yayınları, Yayın No: 190.
  • Gökmen, Y. (2009). Stokastik programlama ile optimal portföy oluşturma. (Yayınlanmamış Doktora Tezi). Gazi Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Grinold R. C. (1989). The fundamental law of active management. Journal of Portfolio Management, 15 (3), 30-37.
  • Jensen, M. C. (1968). The performance of mutual funds in the period 1945-1964. The Journal of Finance, 23 (2), 389-416.
  • Keating, C., and Shadwick, W. F. (2002). A universal performance measure. Journal of Performance Measurement, 6(3), 59–84.
  • Klega, D. (2013). My ventures are not in one bottom trusted: Comparative study to modern portfolio theory and Black-Litterman portfolio formation.( Unpublished Rigorosum Thesis). Charles University, Faculty of Social Sciences.
  • Lim, A.E.B., Shanthikumar, J.G., and Vahn, G-Y. (2011). Conditional value-at-risk in portfolio optimization: Coherent but fragile. Operations Research Letters, 39(3),163-171.
  • Ma, Y., Han, R., and Wang,W. (2021). Portfolio optimization with return prediction using deep learning and machine learning. Expert Systems with Applications,165(1),1139-73.
  • Magdon-Ismail, M., and Atiya, A. (2004). An analysis of the maximum drawdown risk measure. Risk Magazine, 17 (10): 99–102.
  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.
  • Mishra, A. K., Pisipati, S., and Vyas, I. (2011). An equilibrium approach for tactical asset allocation: Assessing Black-Litterman model to Indian stock market. Journal of Economics and International Finance, 3 (10), 553-563.
  • Najafi, A. A,. and Mushakhian, S. (2015). Multi-stage stochastic mean–semivariance–CVaR portfolio optimization under transaction costs. Applied Mathematics and Computation, 256, 445–458.
  • Özdemir, M. (2011). Genetik algoritma kullanılarak portföy seçimi. İktisat Isletme ve Finans, 26 (299), 43-66.
  • Receiz, A. and León, C.E. (2008). Efficient Portfolio Optimization in the Wealth Creation and Maximum Drawdown Space. Berkelaar, A., Coche, J. ve Nyholm, K. (Eds.). Interest Rate Models, Asset Allocation and Quantitative Techniques For Central Banks And Sovereıgn Wealth Funds içinde (s.1-23). Bogota, Colombia: Palgrave Macmillan.
  • Rejeb, A.B., and Boughrara, A.(2013). Financial liberalization and stock markets efficiency: New evidence from emerging economies. Emerging Markets Review, 17, 186–208.
  • Rockafellar, R.T., and Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–41.
  • Roy, A. D. (1952). Safety first and the holding of assets. Econometrica: Journal of the Econometric Society, 20 (3), 431-449.
  • Sharma, A., Utz, S., and Mehra, A. (2017). Omega-CVaR portfolio optimization and its worst case analysis. OR Spectrum, 39, 505–539.
  • Sharpe, W. F. (1966). Mutual fund performance. The Journal of Business, 39(S1), 119.
  • Solatikia, F., Kiliç, E ., and Weber, G.W. (2014). Fuzzy optimization for portfolio selectionbased on embedding theorem in fuzzy normed linear spaces. Organizacija, 47(2), 90-97.
  • Sortino F. A. (2000). Measuring risk: Upside-potential ratios vary by ınvestment style. Pensions and Investments, 28(22), 30–35.
  • Treynor, J. L. (1965). How to rate management of investment funds. Harvard Business Review, 43 (1), 63-75.
  • Uyar, U., ve Küçükşahin, H. (2017). Portföy seçiminde expected maximum drawdown yaklaşımı: BİST100-S&P500 Uygulaması. Business and Economics Research Journal, 8 (4), 727-748.
  • Uygurtürk, H., ve Korkmaz, T. (2015). Portföy optimizasyonunda markowitz modelinin kullanımı: bireysel emeklilik yatırım fonları üzerine bir uygulama. Muhasebe ve Finansman Dergisi,68, 67-82.
  • Yakut, E., ve Çankal, A. (2016). Çok amaçlı genetik algoritma ve hedef programlama metotlarını kullanarak hisse senedi portföy optimizasyonu: BİST 30’da bir uygulama. Business and Economics Research Journal, 7(2),43.62.
  • Young T. W. (1991). Calmar ratio: A smoother tool. Futures (Cedar Falls, Iowa), 20 (11),1-22.
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Önder Büberkökü 0000-0002-7140-557X

Publication Date August 31, 2021
Acceptance Date May 16, 2021
Published in Issue Year 2021 Issue: 59

Cite

APA Büberkökü, Ö. (2021). ALTERNATİF YÖNTEMLERE DAYALI PORTFÖY OPTİMİZASYONU. Erciyes Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi(59), 333-358. https://doi.org/10.18070/erciyesiibd.881391

Ethical Principles and Ethical Guidelines

The Journal of Erciyes University Faculty of Economics and Administrative Sciences places great emphasis on publication ethics, which serve as a foundation for the impartial and reputable advancement of scientific knowledge. In this context, the journal adopts a publishing approach aligned with the ethical standards set by the Committee on Publication Ethics (COPE) and is committed to preventing potential malpractice. The following ethical responsibilities, established based on COPE’s principles, are expected to be upheld by all stakeholders involved in the publication process (authors, readers and researchers, publishers, reviewers, and editors).

Ethical Responsibilities of Editors
Make decisions on submissions based on the quality and originality of the work, its alignment with the journal's aims and scope, and the reviewers’ evaluations, regardless of the authors' religion, language, race, ethnicity, political views, or gender.
Respond to information requests from readers, authors, and reviewers regarding the publication and evaluation processes.
Conduct all processes without compromising ethical standards and intellectual property rights.
Support freedom of thought and protect human and animal rights.
Ensure the peer review process adheres to the principle of double-blind peer review.
Take full responsibility for accepting, rejecting, or requesting changes to a manuscript and ensure that conflicts of interest among stakeholders do not influence these decisions.
Ethical Responsibilities of Authors
Submitted works must be original. When utilizing other works, proper and complete citations and/or references must be provided.
A manuscript must not be under review by another journal simultaneously.
Individuals who have not contributed to the experimental design, implementation, data analysis, or interpretation should not be listed as authors.
If requested during the review process, datasets used in the manuscript must be provided to the editorial board.
If a significant error or mistake is discovered in the manuscript, the journal’s editorial office must be notified.
For studies requiring ethical committee approval, the relevant document must be submitted to the journal. Details regarding the ethical approval (name of the ethics committee, approval document number, and date) must be included in the manuscript.
Changes to authorship (e.g., adding or removing authors, altering the order of authors) cannot be proposed after the review process has commenced.
Ethical Responsibilities of Reviewers
Accept review assignments only in areas where they have sufficient expertise.
Agree to review manuscripts in a timely and unbiased manner.
Ensure confidentiality of the reviewed manuscript and not disclose any information about it, during or after the review process, beyond what is already published.
Refrain from using information obtained during the review process for personal or third-party benefit.
Notify the journal editor if plagiarism or other ethical violations are suspected in the manuscript.
Conduct reviews objectively and avoid conflicts of interest. If a conflict exists, the reviewer should decline the review.
Use polite and constructive language during the review process and avoid personal comments.
Publication Policy
The Journal of Erciyes University Faculty of Economics and Administrative Sciences is a free, open-access, peer-reviewed academic journal that has been in publication since 1981. The journal welcomes submissions in Turkish and English within the fields of economics, business administration, public finance, political science, public administration, and international relations.

No submission or publication fees are charged by the journal.
Every submitted manuscript undergoes a double-blind peer review process and similarity/plagiarism checks via iThenticate.
Submissions must be original and not previously published, accepted for publication, or under review elsewhere.
Articles published in the journal can be cited under the Open Access Policy and Creative Commons license, provided proper attribution is given.
The journal is published three times a year, in April, August, and December. It includes original, high-quality, and scientifically supported research articles and reviews in its listed fields. Academic studies unrelated to these disciplines or their theoretical and empirical foundations are not accepted. The journal's languages are Turkish and English.

Submissions are first subject to a preliminary review for format and content. Manuscripts not meeting the journal's standards are rejected by the editorial board. Manuscripts deemed suitable proceed to the peer review stage.

Each submission is sent to at least two expert reviewers. If both reviews are favorable, the article is approved for publication. In cases where one review is positive and the other negative, the editorial board decides based on the reviews or may send the manuscript to a third reviewer.

Articles published in the journal are open access and can be cited under the Creative Commons license, provided proper attribution is made.