Research Article
BibTex RIS Cite

Maksilla Anterior Bölgede Karbon Fiber Takviyeli Poli-Eter-Eter-Keton İmplantların Çevre Kemikte Oluşturduğu Streslerin Sonlu Elemanlar Analizi ile İncelenmesi

Year 2019, Volume: 3 Issue: 2, 96 - 102, 30.12.2019
https://doi.org/10.35333/ERD.2019.105

Abstract

Amaç:  Oral endoosseöz implantlar için ideal materyal seçimi; 1960’lı yılların sonuna doğru Branemark tarafından tanımlanan saf titanyumdur. Fakat tamamen metal içermeyen materyaller talepeden hastalar gün geçtikçe sayıca artmaktadırve titanyumun bazı dezavantajları dolayısıyla dental implant için yeni materyal arayışları devam etmektedir.Çalışmamızın amacı geleneksel titanyum dental implantlara alternatif olarak kullanılabilecek CFR-PEEK materyalinin simüle edilecek oklüzyon kuvvetleri karşısında, implant çevresindeki kortikal ve spongioz kemikte meydana gelecek stresleri, sonlu eleman analizi ile inceleyerek klinik uygulamalara ışık tutmaktır.

Materyal Metod:Bu çalışmada; maksiller santraldiş bölgelerine yerleştirilen%30 CFR-PEEK ve titanyum implantlarınokluzal kuvvetler karşısında,kortikal kemiğin en üst seviyesinde alınan referans noktalarında oluşturdukları stres değerleri, dağılımı ve yoğunlaşma bölgeleri incelendi. Araştırma üç boyutlu sonlu elemanlar stres analizi yöntemi ile statik lineeranaliz yapılarak gerçekleştirildi.Analiz sonucunda, implant,implant çevresi kortikal kemikte ve spongioz kemikteki Von Misses, Maximum Principal; Minimum Principal stres değerlerine ve stres dağılımlarına bakılmıştır.

Bulgular:Çalışma sonucunda kortikal kemikte meydana gelen stresler, trabeküler kemikte meydana gelen streslerden yüksek bulundu. Oklüzal yükleme altında; implantlarda meydana gelen stres değerleri titanyum implant modelinde fazla iken, kemikte meydana gelen stresler CFR-PEEK implant olan modelde yüksektir. 

Sonuç:CFR-PEEK implantların titanyum implantlara göre biyomekanik olarak bir avantajı bulunmamıştır. CFR-PEEK implantların titanyum implantlara göre boyun kısmında kortikal kemikte non-homojen bir stres birikimine neden olduğu görülmüştür.

Supporting Institution

Başkent Üniversitesi

Project Number

DA 19/04

References

  • 1. Brånemark P. I., Breine U., Adell R., et al. Intra-osseous anchorage of dental prostheses: I. Experimental studies. Scand. J. Plast. Reconstr. Surg. Hand Surg. 3, 81–100 ,1969.
  • 2. Shapira Lior, Klinger Avigdor, Tadir Anat, et al. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture. Clin. Oral Implants Res. 20, 578–582 ,2009.
  • 3. Velasco-Ortega Eugenio, Jos Angeles, Cameán Ana M., et al. In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 702, 17–23 ,2010.
  • 4. Egusa Hiroshi, Ko Nagakazu, Shimazu Tsunetoshi, et al. Suspected association of an allergic reaction with titanium dental implants: A clinical report. J. Prosthet. Dent. 100,344-347,2008.
  • 5. Müller Kurt, Valentine-Thon Elizabeth. Hypersensitivity to titanium: clinical and laboratory evidence. Neuro Endocrinol. Lett.27,31-35 ,2006.
  • 6. Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin. Orthop. Relat. Res.274,124-134 ,1992.
  • 7. Yildirim Murat, Fischer Horst, Marx Rudolf, et al. In vivo fracture resistance of implant-supported all-ceramic restorations. J. Prosthet. Dent. 90, 325–331 ,2003.
  • 8. Andreiotelli Marina, Wenz Hans J., Kohal Ralf Joachim. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clinical Oral Implants Research 20, 32–47 ,2009.
  • 9. Özkurt Zeynep, Kazazoğlu Ender. Zirconia Dental Implants: A Literature Review. J. Oral Implantol. 37, 367–376 ,2010.
  • 10. Özkurt Zeynep, Kazazoĝlu Ender. Clinical success of zirconia in dental applications. J. Prosthodont. 19, 64–68 ,2010.
  • 11. Schwitalla Andreas, Müller Wolf-Dieter. PEEK Dental Implants: A Review of the Literature. J. Oral Implantol. 39, 743–749 ,2011.
  • 12. Goodacre C J, Kan J Y, Rungcharassaeng K. Clinical complications of osseointegrated implants. J. Prosthet. Dent. 81, 537–52 ,1999.
  • 13. RW. Treharne. Review of Wolff’s law and its proposed means of operation. Orthop Rev. 10, 35–47 ,1981.
  • 14. Wiskott H. W. Anselm, Belser Urs C. Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin. Oral Implants Res. 10, 429–444 ,2003.
  • 15. van Staden R. C., Guan H., Loo Y. C. Application of the finite element method in dental implant research. Computer Methods in Biomechanics and Biomedical Engineering 9, 257–270 ,2006.
  • 16. Geng J. P., Ma Q. S., Xu W., et al. Finite element analysis of four thread-form configurations in a stepped screw implant. J. Oral Rehabil. 31, 233–239 ,2004.
  • 17. Sevimay M., Turhan F., Kiliçarslan M. A., et al. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J. Prosthet. Dent. 93, 227–234 ,2005.
  • 18. Meyer Ulrich, Vollmer Dirk, Runte Christoph, et al. Bone loading pattern around implants in average and atrophic edentulous maxillae: A finite-element analysis. J. Cranio-Maxillofacial Surg. 29, 100–105 ,2001.
  • 19. Koca Omer Lutfi, Eskitascioglu Gurcan, Usumez Aslihan. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J. Prosthet. Dent. 93, 38–44 ,2005.
  • 20. Zampelis Antonios, Rangert Bo, Heijl Lars. Tilting of splinted implants for improved prosthodontic support: A two-dimensional finite element analysis. J. Prosthet. Dent. 97, 535–543 ,2007.
  • 21. Kurtz Steven M., Devine John N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28, 4845–4869 ,2007.
  • 22. Toth Jeffrey M., Wang Mei, Estes Bradley T., et al. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 27, 324–334 ,2006.
  • 23. Brantigan John W., Neidre Arvo, Toohey John S. The Lumbar I/F Cage for posterior lumbar interbody fusion with the Variable Screw Placement System: 10-year results of a Food and Drug Administration clinical trial. Spine J. 4, 681–688 ,2004.
  • 24. Akhavan Sam, Matthiesen Mary M., Schulte Leah, et al. Clinical and histologic results related to a low-modulus composite total hip replacement stem. J. Bone Jt. Surg. - Ser. A 88, 1308–1314 ,2006.
  • 25. Isidor Flemming. Influence of forces on peri-implant bone. Clin. Oral Implants Res. 17, 8–18 ,2006.
  • 26. Misch Carl E., Suzuki Jon B., Misch-Dietsh Francine M., et al. A positive correlation between occlusal trauma and peri-implant bone loss: Literature support. Implant Dent. 14, 108–116 ,2005.
  • 27. Albrektsson T, Zarb G, Worthington P, et al. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int. J. Oral Maxillofac. Implants 1, 11–25 ,1986.
  • 28. Şahin Saime, Çehreli Murat C., Yalçin Emine. The influence of functional forces on the biomechanics of implant-supported prostheses - A review. Journal of Dentistry 30, 271–282 ,2002.
  • 29. Geng Jian Ping A., Tan Keson B.C., Liu Gui Rong. Application of finite element analysis in implant dentistry: A review of the literature. Journal of Prosthetic Dentistry 85, 585–598 ,2001.
  • 30. Sato Y., Teixeira E. R., Tsuga K., et al. The effectiveness of a new algorithm on a three-dimensional finite element model construction of bone trabeculae in implant biomechanics. J. Oral Rehabil. 26, 640–643 ,1999.

İnvestigation of Stress Levels At Surrounding Bone of Carbon Fiber Reinforced Polyether-Ether-Keton Implants in The Maxilla Anterior Region with Finite Elemental Analysis

Year 2019, Volume: 3 Issue: 2, 96 - 102, 30.12.2019
https://doi.org/10.35333/ERD.2019.105

Abstract

Purpose:Ideal material selection for oral endoosseous implants as described by Branemark in the late 1960s was pure titanium. However, patients demanding completely non-metal materials and the search for new materials for dental implants continues due to some disadvantages of titanium. The aim of this study is to examine the stresses that will occur in the cortical and spongious bone around the implant against the occlusion forces of CFR-PEEK material which can be used as an alternative to traditional titanium dental implants by using finite element analysis and to shed light on clinical applications.

Material and Method:The stress values, distribution and concentration zones of 30% CFR-PEEK and titanium implants placed at the maxillary central tooth regions at the reference points taken at the top level of the cortical bone were examined. The research was carried out by using static linear analysis with three-dimensional finite element stress analysis method. As a result of the analysis, von Misses, Maximum Principal; Minimum Principal stress values and stress distributions of dental implant and surronding bone were examined.

Results:As a result of the study, the stresses in the cortical bone were higher than the stresses in the trabecular bone. Under occlusal loading; the stress values in the implants are higher in the titanium implant model, whereas the stresses in the bone are higher in the CFR-PEEK implant model.

Conclusion:CFR-PEEK implants have no biomechanical advantage over titanium implants. CFR-PEEK implants were found to cause non-homogenous stress accumulation in the cortical bone in the neck compared to titanium implants.

Project Number

DA 19/04

References

  • 1. Brånemark P. I., Breine U., Adell R., et al. Intra-osseous anchorage of dental prostheses: I. Experimental studies. Scand. J. Plast. Reconstr. Surg. Hand Surg. 3, 81–100 ,1969.
  • 2. Shapira Lior, Klinger Avigdor, Tadir Anat, et al. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture. Clin. Oral Implants Res. 20, 578–582 ,2009.
  • 3. Velasco-Ortega Eugenio, Jos Angeles, Cameán Ana M., et al. In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 702, 17–23 ,2010.
  • 4. Egusa Hiroshi, Ko Nagakazu, Shimazu Tsunetoshi, et al. Suspected association of an allergic reaction with titanium dental implants: A clinical report. J. Prosthet. Dent. 100,344-347,2008.
  • 5. Müller Kurt, Valentine-Thon Elizabeth. Hypersensitivity to titanium: clinical and laboratory evidence. Neuro Endocrinol. Lett.27,31-35 ,2006.
  • 6. Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin. Orthop. Relat. Res.274,124-134 ,1992.
  • 7. Yildirim Murat, Fischer Horst, Marx Rudolf, et al. In vivo fracture resistance of implant-supported all-ceramic restorations. J. Prosthet. Dent. 90, 325–331 ,2003.
  • 8. Andreiotelli Marina, Wenz Hans J., Kohal Ralf Joachim. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clinical Oral Implants Research 20, 32–47 ,2009.
  • 9. Özkurt Zeynep, Kazazoğlu Ender. Zirconia Dental Implants: A Literature Review. J. Oral Implantol. 37, 367–376 ,2010.
  • 10. Özkurt Zeynep, Kazazoĝlu Ender. Clinical success of zirconia in dental applications. J. Prosthodont. 19, 64–68 ,2010.
  • 11. Schwitalla Andreas, Müller Wolf-Dieter. PEEK Dental Implants: A Review of the Literature. J. Oral Implantol. 39, 743–749 ,2011.
  • 12. Goodacre C J, Kan J Y, Rungcharassaeng K. Clinical complications of osseointegrated implants. J. Prosthet. Dent. 81, 537–52 ,1999.
  • 13. RW. Treharne. Review of Wolff’s law and its proposed means of operation. Orthop Rev. 10, 35–47 ,1981.
  • 14. Wiskott H. W. Anselm, Belser Urs C. Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin. Oral Implants Res. 10, 429–444 ,2003.
  • 15. van Staden R. C., Guan H., Loo Y. C. Application of the finite element method in dental implant research. Computer Methods in Biomechanics and Biomedical Engineering 9, 257–270 ,2006.
  • 16. Geng J. P., Ma Q. S., Xu W., et al. Finite element analysis of four thread-form configurations in a stepped screw implant. J. Oral Rehabil. 31, 233–239 ,2004.
  • 17. Sevimay M., Turhan F., Kiliçarslan M. A., et al. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J. Prosthet. Dent. 93, 227–234 ,2005.
  • 18. Meyer Ulrich, Vollmer Dirk, Runte Christoph, et al. Bone loading pattern around implants in average and atrophic edentulous maxillae: A finite-element analysis. J. Cranio-Maxillofacial Surg. 29, 100–105 ,2001.
  • 19. Koca Omer Lutfi, Eskitascioglu Gurcan, Usumez Aslihan. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J. Prosthet. Dent. 93, 38–44 ,2005.
  • 20. Zampelis Antonios, Rangert Bo, Heijl Lars. Tilting of splinted implants for improved prosthodontic support: A two-dimensional finite element analysis. J. Prosthet. Dent. 97, 535–543 ,2007.
  • 21. Kurtz Steven M., Devine John N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28, 4845–4869 ,2007.
  • 22. Toth Jeffrey M., Wang Mei, Estes Bradley T., et al. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 27, 324–334 ,2006.
  • 23. Brantigan John W., Neidre Arvo, Toohey John S. The Lumbar I/F Cage for posterior lumbar interbody fusion with the Variable Screw Placement System: 10-year results of a Food and Drug Administration clinical trial. Spine J. 4, 681–688 ,2004.
  • 24. Akhavan Sam, Matthiesen Mary M., Schulte Leah, et al. Clinical and histologic results related to a low-modulus composite total hip replacement stem. J. Bone Jt. Surg. - Ser. A 88, 1308–1314 ,2006.
  • 25. Isidor Flemming. Influence of forces on peri-implant bone. Clin. Oral Implants Res. 17, 8–18 ,2006.
  • 26. Misch Carl E., Suzuki Jon B., Misch-Dietsh Francine M., et al. A positive correlation between occlusal trauma and peri-implant bone loss: Literature support. Implant Dent. 14, 108–116 ,2005.
  • 27. Albrektsson T, Zarb G, Worthington P, et al. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int. J. Oral Maxillofac. Implants 1, 11–25 ,1986.
  • 28. Şahin Saime, Çehreli Murat C., Yalçin Emine. The influence of functional forces on the biomechanics of implant-supported prostheses - A review. Journal of Dentistry 30, 271–282 ,2002.
  • 29. Geng Jian Ping A., Tan Keson B.C., Liu Gui Rong. Application of finite element analysis in implant dentistry: A review of the literature. Journal of Prosthetic Dentistry 85, 585–598 ,2001.
  • 30. Sato Y., Teixeira E. R., Tsuga K., et al. The effectiveness of a new algorithm on a three-dimensional finite element model construction of bone trabeculae in implant biomechanics. J. Oral Rehabil. 26, 640–643 ,1999.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Original Articles
Authors

Sıdıka Akdeniz 0000-0001-7597-9469

Engin Ediboğlu 0000-0001-6433-2045

Project Number DA 19/04
Publication Date December 30, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

APA Akdeniz, S., & Ediboğlu, E. (2019). Maksilla Anterior Bölgede Karbon Fiber Takviyeli Poli-Eter-Eter-Keton İmplantların Çevre Kemikte Oluşturduğu Streslerin Sonlu Elemanlar Analizi ile İncelenmesi. European Journal of Research in Dentistry, 3(2), 96-102. https://doi.org/10.35333/ERD.2019.105