Research Article
BibTex RIS Cite

Kompozit İçerikli Cad/Cam Blokların Aşınma Direnci ile Mikrosertlik Arasındaki Korelasyonun Değerlendirilmesi

Year 2020, Volume: 4 Issue: 1, 25 - 30, 30.06.2020
https://doi.org/10.35333/ERD.2020.183

Abstract

Amaç: Bu çalışmanın amacı mikrosertlik ve aşınma direnci arasındaki korelasyonun değerlendirilmesidir. Yöntem: Çalışma için 6 farklı materyal olarak konvansiyonel rezin kompozit (IPS Empress direct, Ivoclar Vivadent), hibrit seramik blok (Enamic, Vita), kompozit blok (Lava Ultimate, 3M), (Hc block, Shofu) (BrilliantCrios, Coltene), (Cerasmart, GC), kullanıldı. Örnekler (n=12) termal siklus özelliği olan çiğneme simülatöründe örnekler yaşlandırıldı (49 N kuvvet, 240,000 siklus, 1,5 mm lateral hareket, 1,7 Hz frekans). Lazer tarayıcı kullanılarak aşınan yüzeyler tarandı (Las-20, SD Mechatronic, Almanya) ve Vickers mikrosertlik değeri (VHN) ölçüldü (200 grf, 10s). İstatistiksel analiz spearman korelasyon katsayısı, Kolmogorov-Smirnov, Mann-Whitney U, Friedman ve Kruskal-Wallis testleri kullanılarak yapıldı (önem düzeyi, p<0,05). Bulgular: Veriler değerlendirildiğinde kompozit blok grubu için aşınma direnci ve mikrosertlik arasında korelasyon vardır (r=-0,83) ve hibrit blok ve rezin kompozit grupları için korelasyon yoktur. Bütün materyaller için negatif korelasyon bulunmuştur. Sonuç: IPS Empress direct, Enamic, Brilliant Crios, Hc block, Cerasmart, Lava Ultimate materyalleri için aşınma direnci ve mikrosertlik arasında korelasyon vardır.

Supporting Institution

Marmara Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

SAG-C-DUP-090518-0216

References

  • References
  • 1. Stawarczyk, B., Özcan, M., Trottmann, A., Schmutz, F., Roos, M., & Hämmerle, C. (2013). Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists. The Journal of prosthetic dentistry, 109(5), 325-332.
  • 2. Ruse, N. D., & Sadoun, M. J. (2014). Resin-composite blocks for dental CAD/CAM applications. Journal of dental research, 93(12), 1232-1234.
  • 3. LAUVAHUTANON, S., Takahashi, H., Shiozawa, M., Iwasaki, N., ASAKAWA, Y., Oki, M., ... & Arksornnukit, M. (2014). Mechanical properties of composite resin blocks for CAD/CAM. Dental materials journal, 33(5), 705-710.
  • 4. Della Bona, A., Corazza, P. H., & Zhang, Y. (2014). Characterization of a polymer-infiltrated ceramic-network material. Dental Materials, 30(5), 564-569.
  • 5. VELO, M. M. D. A. C., COELHO, L. V. B. F., BASTING, R. T., AMARAL, F. L. B. D., & FRANÇA, F. M. G. (2016). Longevity of restorations in direct composite resin: Literature review. RGO-Revista Gaúcha de Odontologia, 64(3), 320-326.
  • 6. Heintze, S. D., & Rousson, V. (2012). Clinical effectiveness of direct class II restorations-a meta-analysis. J Adhes Dent, 14(5), 407-31.
  • 7. Fagundes, T. C., Barata, T. D. J. E., Bresciani, E., Cefaly, D. F. G., Jorge, M. F. F., & Navarro, M. F. D. L. (2006). Clinical evaluation of two packable posterior composites: 2-year follow-up. Clinical oral investigations, 10(3), 197-203.
  • 8. Miyashita, E., & Mello, A. T. (2006). Odontologia estética: planejamento e técnica.
  • 9. Yilmaz, E. Ç. (2019). Effect of Sliding Movement Mechanism on Contact Wear Behavior of Composite Materials in Simulation of Oral Environment. Journal of Bio-and Tribo-Corrosion, 5(3), 63.
  • 10. Pazinatto, F. B., Campos, B. B., Costa, L. C., & Atta, M. T. (2003). Effect of the number of thermocycles on microleakage of resin composite restorations. Pesquisa Odontologica Brasileira, 17(4), 337-341.
  • 11. Gale, M. S., & Darvell, B. W. (1999). Thermal cycling procedures for laboratory testing of dental restorations. Journal of dentistry, 27(2), 89-99.
  • 12. Benalcázar Jalkh, E. B., Machado, C. M., Gianinni, M., Beltramini, I., Piza, M. M. T., Coelho, P. G., ... & Bonfante, E. A. (2019). Effect of thermocycling on biaxial flexural strength of CAD/CAM, bulk fill, and conventional resin composite materials. Operative dentistry, 44(5), E254-E262.
  • 13. Vijayan, M., Rajendran, R., & Sreevatsan, R. (2018). Comparative evaluation of microhardness between giomer, compomer, composite and resin-modified GIC. International Dental Journal of Students Research, 6, 61-65.
  • 14. Mehta, S. B., Banerji, S., Millar, B. J., & Suarez-Feito, J. M. (2012). Current concepts on the management of tooth wear: part 1. Assessment, treatment planning and strategies for the prevention and the passive management of tooth wear. British dental journal, 212(1), 17.
  • 15. Mörmann, W. H., Stawarczyk, B., Ender, A., Sener, B., Attin, T., & Mehl, A. (2013). Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and Martens hardness. Journal of the mechanical behavior of biomedical materials, 20, 113-125.
  • 16. Gan, X. Q., Cai, Z. B., Zhang, B. R., Zhou, X. D., & Yu, H. Y. (2012). Friction and wear behaviors of indirect dental restorative composites. Tribology Letters, 46(1), 75-86.
  • 17. Takahashi, R., Jin, J., Nikaido, T., Tagami, J., Hickel, R., & Kunzelmann, K. H. (2013). Surface characterization of current composites after toothbrush abrasion. Dental materials journal, 32(1), 75-82.
  • 18. Stawarczyk, B., Liebermann, A., Eichberger, M., & Güth, J. F. (2016). Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. Journal of the mechanical behavior of biomedical materials, 55, 1-11.
  • 19. Reymus, M., Roos, M., Eichberger, M., Edelhoff, D., Hickel, R., & Stawarczyk, B. (2019). Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy. Clinical oral investigations, 23(2), 529-538.

Evaluation of Correlation Between Wear Resistance and Microhardness of Resin Based CAD/CAM Blocks

Year 2020, Volume: 4 Issue: 1, 25 - 30, 30.06.2020
https://doi.org/10.35333/ERD.2020.183

Abstract

Aim: To examine the relation wear resistance and microhardness of composite block, hybrid block, resin composite to provide convenient argument to clinical usage of materials. Methods: Conventional resin composite (IPS Empress direct, Ivoclar Vivadent), hybrid ceramic block (Enamic, Vita) and composite blocks (Lava Ultimate, 3M), (Hc block, Shofu),  (BrilliantCrios, Coltene), (Cerasmart, GC) were investigated. Specimens (n=12 for each group) (n=12 for each group) were loaded in a chewing simulator together a thermal cycling (49 N force, 240.000 cycles, 1.5 mm lateral movement, 1.7 Hz frequency). Specimens were scanned with a Las-20 (Laserscanner, SD Mechatronic) and Vickers microhardness (VHN) was determined (200 grf, 10 s). Statistical analysis was performed with using spearman correlation coefficient.  Results: A negative correlation determined for all groups (r=- 0.83). Correlation was observed only composite block group between microhardness and wear resistance and no correlation was found hybrid block and resin composite. Conclusion: Correlation has found between surface microhardness and abrasive wear resistance of the IPS Empress direct,Enamic, Brilliant Crios, Hc block, Cerasmart, Lava Ultimate materials.

Project Number

SAG-C-DUP-090518-0216

References

  • References
  • 1. Stawarczyk, B., Özcan, M., Trottmann, A., Schmutz, F., Roos, M., & Hämmerle, C. (2013). Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists. The Journal of prosthetic dentistry, 109(5), 325-332.
  • 2. Ruse, N. D., & Sadoun, M. J. (2014). Resin-composite blocks for dental CAD/CAM applications. Journal of dental research, 93(12), 1232-1234.
  • 3. LAUVAHUTANON, S., Takahashi, H., Shiozawa, M., Iwasaki, N., ASAKAWA, Y., Oki, M., ... & Arksornnukit, M. (2014). Mechanical properties of composite resin blocks for CAD/CAM. Dental materials journal, 33(5), 705-710.
  • 4. Della Bona, A., Corazza, P. H., & Zhang, Y. (2014). Characterization of a polymer-infiltrated ceramic-network material. Dental Materials, 30(5), 564-569.
  • 5. VELO, M. M. D. A. C., COELHO, L. V. B. F., BASTING, R. T., AMARAL, F. L. B. D., & FRANÇA, F. M. G. (2016). Longevity of restorations in direct composite resin: Literature review. RGO-Revista Gaúcha de Odontologia, 64(3), 320-326.
  • 6. Heintze, S. D., & Rousson, V. (2012). Clinical effectiveness of direct class II restorations-a meta-analysis. J Adhes Dent, 14(5), 407-31.
  • 7. Fagundes, T. C., Barata, T. D. J. E., Bresciani, E., Cefaly, D. F. G., Jorge, M. F. F., & Navarro, M. F. D. L. (2006). Clinical evaluation of two packable posterior composites: 2-year follow-up. Clinical oral investigations, 10(3), 197-203.
  • 8. Miyashita, E., & Mello, A. T. (2006). Odontologia estética: planejamento e técnica.
  • 9. Yilmaz, E. Ç. (2019). Effect of Sliding Movement Mechanism on Contact Wear Behavior of Composite Materials in Simulation of Oral Environment. Journal of Bio-and Tribo-Corrosion, 5(3), 63.
  • 10. Pazinatto, F. B., Campos, B. B., Costa, L. C., & Atta, M. T. (2003). Effect of the number of thermocycles on microleakage of resin composite restorations. Pesquisa Odontologica Brasileira, 17(4), 337-341.
  • 11. Gale, M. S., & Darvell, B. W. (1999). Thermal cycling procedures for laboratory testing of dental restorations. Journal of dentistry, 27(2), 89-99.
  • 12. Benalcázar Jalkh, E. B., Machado, C. M., Gianinni, M., Beltramini, I., Piza, M. M. T., Coelho, P. G., ... & Bonfante, E. A. (2019). Effect of thermocycling on biaxial flexural strength of CAD/CAM, bulk fill, and conventional resin composite materials. Operative dentistry, 44(5), E254-E262.
  • 13. Vijayan, M., Rajendran, R., & Sreevatsan, R. (2018). Comparative evaluation of microhardness between giomer, compomer, composite and resin-modified GIC. International Dental Journal of Students Research, 6, 61-65.
  • 14. Mehta, S. B., Banerji, S., Millar, B. J., & Suarez-Feito, J. M. (2012). Current concepts on the management of tooth wear: part 1. Assessment, treatment planning and strategies for the prevention and the passive management of tooth wear. British dental journal, 212(1), 17.
  • 15. Mörmann, W. H., Stawarczyk, B., Ender, A., Sener, B., Attin, T., & Mehl, A. (2013). Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and Martens hardness. Journal of the mechanical behavior of biomedical materials, 20, 113-125.
  • 16. Gan, X. Q., Cai, Z. B., Zhang, B. R., Zhou, X. D., & Yu, H. Y. (2012). Friction and wear behaviors of indirect dental restorative composites. Tribology Letters, 46(1), 75-86.
  • 17. Takahashi, R., Jin, J., Nikaido, T., Tagami, J., Hickel, R., & Kunzelmann, K. H. (2013). Surface characterization of current composites after toothbrush abrasion. Dental materials journal, 32(1), 75-82.
  • 18. Stawarczyk, B., Liebermann, A., Eichberger, M., & Güth, J. F. (2016). Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. Journal of the mechanical behavior of biomedical materials, 55, 1-11.
  • 19. Reymus, M., Roos, M., Eichberger, M., Edelhoff, D., Hickel, R., & Stawarczyk, B. (2019). Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy. Clinical oral investigations, 23(2), 529-538.
There are 20 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Original Articles
Authors

Ezgi Tüter Bayraktar 0000-0001-9087-493X

Cafer Türkmen 0000-0002-0707-5908

Pınar Yılmaz Atalı 0000-0003-3121-360X

Bilge Tarçın

Bora Korkut 0000-0001-6360-9436

Bilal Yaşa 0000-0001-7353-4335

Project Number SAG-C-DUP-090518-0216
Publication Date June 30, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Tüter Bayraktar, E., Türkmen, C., Yılmaz Atalı, P., Tarçın, B., et al. (2020). Evaluation of Correlation Between Wear Resistance and Microhardness of Resin Based CAD/CAM Blocks. European Journal of Research in Dentistry, 4(1), 25-30. https://doi.org/10.35333/ERD.2020.183