Research Article
BibTex RIS Cite

Evaluation of The Frequency of Artifacts in CBCT Depending on The Different Size of Field of View

Year 2023, Volume: 7 Issue: 1, 8 - 15, 30.04.2023
https://doi.org/10.29228/erd.37

Abstract

ABSTRACT
Objectives: Various artifacts can be encountered when examining Cone-beam computed tomography(CBCT) images. In recent years, no descriptive study has been conducted on CBCT artifacts in the literature. The aim of this study is to identify artifacts in CBCT images with different imaging fields (FOV) taken on the same device, to determine their frequency, and also to reveal artifacts that are little known in the literature.
Materials and Methods: In the study, CBCT images of the Faculty of Dentistry between the years 2012-2021 were scanned retrospectively and a total of 359 Cone Beam Computed Tomography images with 50x55, 100x55, 100x90, 130x55, 130x90, 230x170, 230x270 imaging fields (FOV) in the database, which met the exclusion and inclusion criteria, were analyzed by three oral and maxillofacial radiology research assistants and the types of artifacts seen on these images were determined. The incidence of the identified artifact types in the specified imaging areas was evaluated.
Results: When looking at all images, the most common errors, regardless of FOV, were inevitable artifacts. Aliasing and motion artifacts were seen at higher rates on CBCT images with a larger field of view. In addition, the ring artifact was encountered in CBCT images with high imaging fields such as 130x90, 230x170 and 230x270.
Conclusion: To know the incidence and causes of artifacts in images; it will prevent the patient, the environment and the practitioner from receiving x-rays (radiation) unnecessarily, mixing these errors with different pathological conditions and repetition of the image.

References

  • Referans1 Terakado M, Hashimoto K, Arai Y, Honda M, Sekiwa T, Sato H.Diagnostic imaging with newly developed ortho cubic super-high resolution computed tomography (Ortho-CT). Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 2000; 89(4), 509–518.
  • Referans2 Arai Y, Tammisalo E, Iwai K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 1999; 28: pp. 245-248.
  • Referans3 Scarfe WC, Farman AG.What is cone-beam CT and how does it work?. Dent Clin North Am 2008; 52: pp. 707-730.
  • Referans4 Pauwels R. What is CBCT and how does itwork?. In: Scarfe WC, Angelopoulos C, eds. Maxillofacial Cone Beam Computed Tomography: Principles, Techniques and Clinical Applications. 1st ed. E-book: Springer; 2018; p.13-41.
  • Referans5 Nasseh I, Al-Rawi W. Cone Beam Computed Tomography. Dental clinics of North America 2018; 62(3), 361–391.
  • Referans6 Geleijns J. Computed tomography. In: Dance DR, Christofides S, Maidment ADA, McLean LD, Ng K-H, editors. Diagnostic Radiology Physics: A Handbook for Teachers and Students. Vienna: IAEA; 2014; p.257-290.
  • Referans7 Samei E, Peck DJ, editors. Hendee's Physics of Medical Imaging. 5th ed. New Jersey: Wiley-Blackwell; 2019.
  • Referans8 Wolbarst AB, Capasso P, Wyant AR, editors. Medical Imaging: Essentials for Physicians. 1st ed. New Jersey: Willey-Blackwell; 2013.
  • Referans9 Sharp GC, Kandasamy N, Singh H, Folkert M. GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration. Phys Med Biol 2007;52:5771–5783.
  • Referans10 Kalender WA, Kyriakou Y. Flat-detector computed tomography (FD-CT). Eur Radiol 2007;17:2767–2779.
  • Referans11 Zhang Y, Zhang L, Zhu XR, Lee AK, Chambers M, Dong L. Reducing metal artifacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys. 2007 Mar 1;67(3):924-32. Referans12 Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, Schoemer E. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011 Jul;40(5):265-73.
  • Referans13 Stuehmer C, Essig H, Bormann K-H, Majdani O, Gellrich N-C, Rücker M. Cone beam CT imaging of airgun injuries to the craniomaxillofacial region. Int J Oral Maxillofac Surg 2008;37:903–906.
  • Referans14 Hsieh J, Molthen RC, Dawson CA, Johnson RH. An iterative approach to the beam hardening correction in cone beam CT. Med Phys 2007;27:23–29.
  • Referans15 Holberg C, Steinhäuser S, Geis P, Rudzki-Janson I. Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop 2005;66:434–444.
  • Referans16 Samei A, Bakalyar D, Boedeker KL. Performance evaluation of computed tomography systems, the report of AAPM task group 233. Report no 233. AAPM publications, 2019.
  • Referans17 White SC, Pharoah MJ. White and Pharoah's Oral Radiology: Principles and Interpretation. Elsevier Health Sciences 2018;11:193-197.
  • Referans18 Joseph PM, Spital RD. The exponential edge-gradient eff ect in x-ray computed tomography. Phys Med Biol 1981;26:473-87.
  • Referans19 Jacobs R. Dental cone beam CT and its justified use in oral health care. JBR-BTR. 2011;94:254–265.
  • Referans20 Jacobs R, Quirynen M. Dental cone beam computed tomography: justification for use in planning oral implant placement. Periodontology 2000. 2014;66:203–213
  • Referans21 Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29(Suppl):55–77.
  • Referans22 Vercruyssen M, Laleman I, Jacobs R, Quirynen M. Computer-supported implant planning and guided surgery: a narrative review. Clin Oral Implants Res. 2015;26(Suppl):69–76.
  • Referans23 Donaldson K, O'Connor S, Heath N. Dental cone beam CT image quality possibly reduced by patient movement. Dentomaxillofac Radiol 2013;42:91866873.
  • Referans24 Kuusisto N, Vallittu PK, Lassila LVJ, Huumonen S. Evaluation of intensity of artefacts in CBCT by radio-opacity of composite simulation models of implants in vitro. Dentomaxillofacial Radiol. 2015;44:20140157.
  • Referans25 Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44:20140224.
  • Referans26 Pauwels R, Stamatakis H, Bosmans H, Bogaerts R, Jacobs R, Horner K, Tsiklakis K, SEDENTEXCT Project Consortium Quantification of metal artefacts on cone beam computed tomography images. Clin Oral Implants Res. 2013;100(Suppl):94–99.
  • Referans27 Bechara B, McMahan CA, Geha H, Noujeim M. Evaluation of a cone beam CT artefact reduction algorithm. Dentomaxillofac Radiol. 2012;41:422–8.
  • Referans28 Pauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac Radiol. 2015;44:20140238.
  • Referans29 Bhoosreddy AR, Sakhavalkar UP. Image deteriorating factors in cone beam computed tomography, their classification, measure to reduce them: A pictorial essay. J Indian Acad Oral Med Radiol. 2014;26:293–7.
  • Referans30 Makins RS. Artifacts interfering with interpretation of cone beam computed tomography images. Dent Clin North Am. 2014;58:485–95.
  • Referans31 Aydoğmuş Erik A. , Yıldırım D. , Erik C. E. Konik Işınlı Bilgisayarlı Tomografi Görüntülerinde Kök Kanal Dolgulu Dişlerde Oluşan Artefaktların Değerlendirilmesi. Selcuk Dental Journal. 2021; 8(3): 796-801.
  • Referans32 de Oliveira Pinto MG, Melo SLS, Suassuna FCM, Marinho LE, Leite JBDS, Batista AUD, Bento PM, Melo DP. Influence of size of field of view (FOV), position within the FOV, and scanning mode on the detection of root fracture and observer's perception of artifacts in CBCT images. Dentomaxillofac Radiol. 2021 Sep 1;50(6):20200563.

KIBT’ta Karşılaşılabilen Artifaktların Farklı Görüntüleme Alanlarında Görülme Sıklığının Değerlendirilmesi

Year 2023, Volume: 7 Issue: 1, 8 - 15, 30.04.2023
https://doi.org/10.29228/erd.37

Abstract

Amaç: Konik ışınlı bilgisayarlı tomografi (KIBT) görüntüleri incelenirken çeşitli artefaktlarla karşılaşılabilir. Son yıllarda literatürde KIBT artefaktları ile ilgili tanımlayıcı bir çalışma yapılmamıştır. Bu çalışmanın amacı, aynı cihaz üzerinde çekilen farklı görüntüleme alanlarına (FOV) sahip KIBT görüntülerindeki artefaktları tespit etmek, sıklıklarını belirlemek ve ayrıca literatürde az bilinen artefaktları ortaya çıkarmaktır.

Gereç ve Yöntem: Çalışmada 2012-2021 yılları arasında Diş Hekimliği Fakültesindeki KIBT görüntüleri geriye dönük olarak taranmış ve 50x55, 100x55, 100x90, 130x55, 130x90, 230x170, 230x270 görüntüleme alanlaına sahip toplam 359 Konik Işınlı Bilgisayarlı Tomografi görüntüsü alınmıştır. Dışlama ve dahil etme kriterlerine uygun veri tabanındaki KIBT görüntüleri üç oral ve maksillofasiyal radyoloji araştırma görevlisi tarafından incelendi ve bu görüntülerde görülen artefakt türleri belirlendi. Belirlenen görüntüleme alanlarında tanımlanan artefakt tiplerinin görülme sıklığı değerlendirildi.

Bulgular: Tüm görüntülere bakıldığında, FOV'dan bağımsız olarak en yaygın hatalar kaçınılmaz artefaktlardı. Daha geniş görüş alanına sahip KIBT görüntülerinde aliasing ve hareket artefaktları daha yüksek oranlarda görüldü. Ayrıca 130x90, 230x170 ve 230x270 gibi yüksek görüntüleme alanlarına sahip KIBT görüntülerinde halka artefaktı ile karşılaşıldı.

Sonuç: Görüntülerdeki artefaktların görülme sıklığını ve nedenlerini bilmek; hastanın, çevrenin ve uygulayıcının gereksiz yere röntgen (radyasyon) almasını, bu hataları farklı patolojik durumlarla karıştırmasını ve görüntünün tekrarını önleyecektir.

References

  • Referans1 Terakado M, Hashimoto K, Arai Y, Honda M, Sekiwa T, Sato H.Diagnostic imaging with newly developed ortho cubic super-high resolution computed tomography (Ortho-CT). Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 2000; 89(4), 509–518.
  • Referans2 Arai Y, Tammisalo E, Iwai K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 1999; 28: pp. 245-248.
  • Referans3 Scarfe WC, Farman AG.What is cone-beam CT and how does it work?. Dent Clin North Am 2008; 52: pp. 707-730.
  • Referans4 Pauwels R. What is CBCT and how does itwork?. In: Scarfe WC, Angelopoulos C, eds. Maxillofacial Cone Beam Computed Tomography: Principles, Techniques and Clinical Applications. 1st ed. E-book: Springer; 2018; p.13-41.
  • Referans5 Nasseh I, Al-Rawi W. Cone Beam Computed Tomography. Dental clinics of North America 2018; 62(3), 361–391.
  • Referans6 Geleijns J. Computed tomography. In: Dance DR, Christofides S, Maidment ADA, McLean LD, Ng K-H, editors. Diagnostic Radiology Physics: A Handbook for Teachers and Students. Vienna: IAEA; 2014; p.257-290.
  • Referans7 Samei E, Peck DJ, editors. Hendee's Physics of Medical Imaging. 5th ed. New Jersey: Wiley-Blackwell; 2019.
  • Referans8 Wolbarst AB, Capasso P, Wyant AR, editors. Medical Imaging: Essentials for Physicians. 1st ed. New Jersey: Willey-Blackwell; 2013.
  • Referans9 Sharp GC, Kandasamy N, Singh H, Folkert M. GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration. Phys Med Biol 2007;52:5771–5783.
  • Referans10 Kalender WA, Kyriakou Y. Flat-detector computed tomography (FD-CT). Eur Radiol 2007;17:2767–2779.
  • Referans11 Zhang Y, Zhang L, Zhu XR, Lee AK, Chambers M, Dong L. Reducing metal artifacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys. 2007 Mar 1;67(3):924-32. Referans12 Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, Schoemer E. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011 Jul;40(5):265-73.
  • Referans13 Stuehmer C, Essig H, Bormann K-H, Majdani O, Gellrich N-C, Rücker M. Cone beam CT imaging of airgun injuries to the craniomaxillofacial region. Int J Oral Maxillofac Surg 2008;37:903–906.
  • Referans14 Hsieh J, Molthen RC, Dawson CA, Johnson RH. An iterative approach to the beam hardening correction in cone beam CT. Med Phys 2007;27:23–29.
  • Referans15 Holberg C, Steinhäuser S, Geis P, Rudzki-Janson I. Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop 2005;66:434–444.
  • Referans16 Samei A, Bakalyar D, Boedeker KL. Performance evaluation of computed tomography systems, the report of AAPM task group 233. Report no 233. AAPM publications, 2019.
  • Referans17 White SC, Pharoah MJ. White and Pharoah's Oral Radiology: Principles and Interpretation. Elsevier Health Sciences 2018;11:193-197.
  • Referans18 Joseph PM, Spital RD. The exponential edge-gradient eff ect in x-ray computed tomography. Phys Med Biol 1981;26:473-87.
  • Referans19 Jacobs R. Dental cone beam CT and its justified use in oral health care. JBR-BTR. 2011;94:254–265.
  • Referans20 Jacobs R, Quirynen M. Dental cone beam computed tomography: justification for use in planning oral implant placement. Periodontology 2000. 2014;66:203–213
  • Referans21 Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: a systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29(Suppl):55–77.
  • Referans22 Vercruyssen M, Laleman I, Jacobs R, Quirynen M. Computer-supported implant planning and guided surgery: a narrative review. Clin Oral Implants Res. 2015;26(Suppl):69–76.
  • Referans23 Donaldson K, O'Connor S, Heath N. Dental cone beam CT image quality possibly reduced by patient movement. Dentomaxillofac Radiol 2013;42:91866873.
  • Referans24 Kuusisto N, Vallittu PK, Lassila LVJ, Huumonen S. Evaluation of intensity of artefacts in CBCT by radio-opacity of composite simulation models of implants in vitro. Dentomaxillofacial Radiol. 2015;44:20140157.
  • Referans25 Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44:20140224.
  • Referans26 Pauwels R, Stamatakis H, Bosmans H, Bogaerts R, Jacobs R, Horner K, Tsiklakis K, SEDENTEXCT Project Consortium Quantification of metal artefacts on cone beam computed tomography images. Clin Oral Implants Res. 2013;100(Suppl):94–99.
  • Referans27 Bechara B, McMahan CA, Geha H, Noujeim M. Evaluation of a cone beam CT artefact reduction algorithm. Dentomaxillofac Radiol. 2012;41:422–8.
  • Referans28 Pauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac Radiol. 2015;44:20140238.
  • Referans29 Bhoosreddy AR, Sakhavalkar UP. Image deteriorating factors in cone beam computed tomography, their classification, measure to reduce them: A pictorial essay. J Indian Acad Oral Med Radiol. 2014;26:293–7.
  • Referans30 Makins RS. Artifacts interfering with interpretation of cone beam computed tomography images. Dent Clin North Am. 2014;58:485–95.
  • Referans31 Aydoğmuş Erik A. , Yıldırım D. , Erik C. E. Konik Işınlı Bilgisayarlı Tomografi Görüntülerinde Kök Kanal Dolgulu Dişlerde Oluşan Artefaktların Değerlendirilmesi. Selcuk Dental Journal. 2021; 8(3): 796-801.
  • Referans32 de Oliveira Pinto MG, Melo SLS, Suassuna FCM, Marinho LE, Leite JBDS, Batista AUD, Bento PM, Melo DP. Influence of size of field of view (FOV), position within the FOV, and scanning mode on the detection of root fracture and observer's perception of artifacts in CBCT images. Dentomaxillofac Radiol. 2021 Sep 1;50(6):20200563.
There are 31 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Original Articles
Authors

Elif Polat 0000-0001-5457-8375

Burak İncebeyaz 0000-0001-9952-0548

Hatice Ahsen Deniz 0000-0001-8477-6807

Hakan Eren 0000-0001-9006-6836

Early Pub Date April 29, 2023
Publication Date April 30, 2023
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

APA Polat, E., İncebeyaz, B., Deniz, H. A., Eren, H. (2023). Evaluation of The Frequency of Artifacts in CBCT Depending on The Different Size of Field of View. European Journal of Research in Dentistry, 7(1), 8-15. https://doi.org/10.29228/erd.37