Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 1, 35 - 41, 31.03.2021
https://doi.org/10.35208/ert.810226

Abstract

References

  • S. Asad, M. A. Amoozegar, A. A. Pourbabaee, M. N. Sarbolouki, S. M. M. Dastgheib, ‘‘Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria’’, Bioresource Technology, Vol. 98(11), pp. 2082–2088, 2007.
  • R. L. Singh, P. K. Singh, R. P. Singh, ‘‘Enzymatic decolorization and degradation of azo dyes – a review’’, International Biodeterioration & Biodegradation, Vol. 104, pp. 21–31, 2015.
  • C. Srikantan, G. K. Suraishkumar, S. Srivastava, ‘‘Effect of light on the kinetics and equilibrium of the textile dye (Reactive red 120) adsorption by helianthus annuus hairy roots’’, Bioresource Technology, Vol. 257, pp. 84–91, 2018.
  • Y. Liu, Y. Liu, R. Qu, C. Ji, C. Sun, ‘‘Comparison of adsorption properties for anionic dye by metal organic frameworks with different metal ions’’, Colloids and Surfaces A:Physicochemical and Engineering Aspects, Vol. 586, pp. 1-7, 2020.
  • M. A., Ahmad, N., Ahmad, N. & O. S. Bello, ‘‘Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions’’, Applied Water Science, Vol. 5, pp. 407–423, 2015.
  • A. A. Spagnoli, D. A. Giannakoudakis, S. Bashkova, ‘‘Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: the role of surface and structural parameters’’, Journal of Molecular Liquids, Vol. 229, pp. 465–471, 2017.
  • R. Subramaniam, S. K. Ponnusamy, ‘‘Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: optimization by response surface methodology’’, Water Resources and Industry, Vol. 11, pp. 64–70, 2015.
  • M. T. Yagub, T. K. Sen, S. Afroze, H. M. Ang, ‘‘Dye and its removal from aqueous solution by adsorption: a review’’, Advances Colloid and Interface Science, Vol. 209, pp. 172–184, 2014.
  • M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, ‘‘Adsorption of methylene blue on low-cost adsorbents: a review’’, Journal of Hazardous Materials, Vol. 177(1–3), pp. 70–80, 2010.
  • M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim, A. Idris, ‘‘Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review’’, Desalination, Vol. 280(1-3), pp.1–13, 2011.
  • Y.-G. Kang, H. Yoon, C.-S. Lee, E.-J. Kim, Y.-S. Chang, ‘‘Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite’’, Water Research, Vol. 151, pp. 413-422, 2019.
  • A. Muniyasamy, G. Sivaporul, A. Gopinath, R. Lakshmanan, A. Altaee, A. Achary, P. V. Chellam, ‘‘Process development for the degradation of textile azo dyes (mono-, di-, poly-) by advanced oxidation process - ozonation: experimental & partial derivative modelling approach’’, Journal of Environmental Management, Vol. 265, pp. 1-10, 2020.
  • Y. Lu, Y. Fang, X. Xiao, S. Qi, C. Huan, Y. Zhan, H. Cheng, G. Xu, ‘‘Petal-like molybdenum disulfide loaded nanofibers membrane with super hydrophilic property for dye adsorption’’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 553, pp. 210-217, 2018.
  • Y. Ma, P. Qi, J. Ju, Q. Wang, L. Hao, R. Wang, K. Sui, Y. Tan, ‘‘Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes’’, Composites Part B: Engineering, Vol. 162, pp. 671-677, 2019.
  • L. A. Pereira, A. B. Couto, D. A. L. Almeida, N. G. Ferreira, ‘‘Singular properties of boron-doped diamond/carbon fiber composite as anode in Brilliant Green dye electrochemical degradation’’, Diamond and Related Materials, Vol. 103, pp. 1-7, 2020.
  • N. P. Shetti, S. J. Malode, R. S. Malladi, S. L. Nargund, S. S. Shukla, T. M. Aminabhavi, ‘‘Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode’’, Microchemical Journal, Vol. 146, pp. 387-392, 2019.
  • J. Joseph, R. C. Radhakrishnan, J. K. Johnson, S. P. Joy, J. Thomas, ‘‘Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate’’, Materials Chemistry and Physics, Vol. 242, pp. 1-8, 2020.
  • H. N. Bhatti, Y. Safa, S. M. Yakout, O. H. Shair, M. Iqbal, A. Nazir, ‘‘Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies’’, International Journal of Biological Macromolecules, Vol. 150, pp. 861-870, 2020.
  • C. Puri, G. Sumana, ‘‘Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite’’, Applied Clay Science, Vol. 166, pp. 102-112, 2018.
  • E. Alver, A. Ü. Metin, F. Brouers, ‘‘Methylene blue adsorption on magnetic alginate/rice husk bio-composite’’, International Journal of Biological Macromolecules, Vol. 154, pp. 104-113, 2020.
  • F. Dhaouadi, L. Sellaoui, G. L. Dotto, A. Bonilla-Petriciolet, A. Erto, A. B. Lamine, ‘‘Adsorption of methylene blue on comminuted raw avocado seeds: Interpretation of the effect of salts via physical monolayer model’’, Journal of Molecular Liquids, Vol. 305, pp. 1-8, 2020.
  • A. H. Jawad, R. Razuan, J. N. Appaturi, L. D. Wilson, ‘‘Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation’’, Surfaces and Interfaces, Vol. 16, pp. 76-84, 2019.
  • D. S. Tong, C. W. Wu, M. O. Adebajo, G. C. Jin, W. H. Yu, S. F. Ji, C. H. Zhou, ‘‘Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/montmorillonite nanocomposites’’, Applied Clay Science, Vol. 161, pp. 256-264, 2018.
  • S. Idris, Y. A. Iyaka, M. M. Ndamitso, E. B. Mohammed, M. T. Umar, ‘‘Evaluation of kinetic models of copper and lead uptake from dye wastewater by activated pride of barbados shell’’, American Journal of Chemistry, Vol. 1, pp. 47–51, 2012.
  • Y. Ho, A. Ofomaja, ‘‘Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber’’, Journal of Hazardous Materials, Vol. 129, pp. 137–142, 2006.
  • F. B. Rebah, S. M. Siddeeg, ‘‘Cactus an eco-friendly material for wastewater treatment: a review’’, Journal of Materials and Environmental Science, Vol. 8, pp. 1770–1782, 2017.
  • H. A. Al-Husseiny, ‘‘Adsorption of methylene blue dye using low cost adsorbent of sawdust: batch and continues studies’’, Journal of University of Babylon, Vol. 22(2), pp. 296-310, 2014.
  • W. C. Wanyonyi, J. M. Onyari, P. M. Shiundu, ‘‘Adsorption of Congo red dye from aqueous solutions using roots of Eichhornia crassipes: kinetic and equilibrium studies’’, Energy Procedia, Vol. 50, pp. 862–869, 2014.
  • M. J. Ahmed, P. U. Okoye, E. H. Hummadi, B. H. Hameed, ‘‘High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue’’, Bioresource Technology, Vol. 278, pp. 159-164, 2019.
  • Ravi, Lalit M. Pandey, ‘‘Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue’’, Applied Clay Science, Vol. 169, pp. 102-111, 2019.
  • S. Langergren, B. K. Svenska, Zur theorie der sogenannten adsorption geloester stoffe, Veternskapsakad Handlingar, Vol. 24, pp. 1-39, 1898.
  • Y. S. Ho, G. Mckay, Kinetic models for the sorption of dye from aqueous solution by wood, Process Safety and Environmental Protection, Vol. 76, pp. 183-191, 1998.
  • W. J. Weber, J. C. Morris, Kinetics of adsorption on carbon from solution, Journal of the Sanitary Engineering Division, Vol. 89, pp. 31-60, 1963.

Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala

Year 2021, Volume: 4 Issue: 1, 35 - 41, 31.03.2021
https://doi.org/10.35208/ert.810226

Abstract

In recent years, great focused has been placed on the development of low-cost adsorbents to be used for applications regarding treatment of wastewater. In this study, Leucaena leucocephala peel (LLP) was used for adsorption of methylene blue from aqueous solutions. The experiments were conducted at seven concentrations (15, 30, 45, 60, 75, 90, 105 mg L-1) and three temperatures (298, 308, 318 K). The obtained data were applied to adsorption isotherm, kinetic and thermodynamic calculations. The results showed that Freundlich isotherm was more appropriate compared to Langmuir and Temkin isotherms. The kinetic results indicated that the process fitted pseudo second order model with higher R2 values compared to pseudo first order and intra-particle diffusion models. Gibbs free energy, enthalpy and entropy values were calculated for 298 K as 2.776 kJ mol-1, 6.262 kJ mol-1 and 11.699 J mol-1, respectively.

References

  • S. Asad, M. A. Amoozegar, A. A. Pourbabaee, M. N. Sarbolouki, S. M. M. Dastgheib, ‘‘Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria’’, Bioresource Technology, Vol. 98(11), pp. 2082–2088, 2007.
  • R. L. Singh, P. K. Singh, R. P. Singh, ‘‘Enzymatic decolorization and degradation of azo dyes – a review’’, International Biodeterioration & Biodegradation, Vol. 104, pp. 21–31, 2015.
  • C. Srikantan, G. K. Suraishkumar, S. Srivastava, ‘‘Effect of light on the kinetics and equilibrium of the textile dye (Reactive red 120) adsorption by helianthus annuus hairy roots’’, Bioresource Technology, Vol. 257, pp. 84–91, 2018.
  • Y. Liu, Y. Liu, R. Qu, C. Ji, C. Sun, ‘‘Comparison of adsorption properties for anionic dye by metal organic frameworks with different metal ions’’, Colloids and Surfaces A:Physicochemical and Engineering Aspects, Vol. 586, pp. 1-7, 2020.
  • M. A., Ahmad, N., Ahmad, N. & O. S. Bello, ‘‘Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions’’, Applied Water Science, Vol. 5, pp. 407–423, 2015.
  • A. A. Spagnoli, D. A. Giannakoudakis, S. Bashkova, ‘‘Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: the role of surface and structural parameters’’, Journal of Molecular Liquids, Vol. 229, pp. 465–471, 2017.
  • R. Subramaniam, S. K. Ponnusamy, ‘‘Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: optimization by response surface methodology’’, Water Resources and Industry, Vol. 11, pp. 64–70, 2015.
  • M. T. Yagub, T. K. Sen, S. Afroze, H. M. Ang, ‘‘Dye and its removal from aqueous solution by adsorption: a review’’, Advances Colloid and Interface Science, Vol. 209, pp. 172–184, 2014.
  • M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, ‘‘Adsorption of methylene blue on low-cost adsorbents: a review’’, Journal of Hazardous Materials, Vol. 177(1–3), pp. 70–80, 2010.
  • M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim, A. Idris, ‘‘Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review’’, Desalination, Vol. 280(1-3), pp.1–13, 2011.
  • Y.-G. Kang, H. Yoon, C.-S. Lee, E.-J. Kim, Y.-S. Chang, ‘‘Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite’’, Water Research, Vol. 151, pp. 413-422, 2019.
  • A. Muniyasamy, G. Sivaporul, A. Gopinath, R. Lakshmanan, A. Altaee, A. Achary, P. V. Chellam, ‘‘Process development for the degradation of textile azo dyes (mono-, di-, poly-) by advanced oxidation process - ozonation: experimental & partial derivative modelling approach’’, Journal of Environmental Management, Vol. 265, pp. 1-10, 2020.
  • Y. Lu, Y. Fang, X. Xiao, S. Qi, C. Huan, Y. Zhan, H. Cheng, G. Xu, ‘‘Petal-like molybdenum disulfide loaded nanofibers membrane with super hydrophilic property for dye adsorption’’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 553, pp. 210-217, 2018.
  • Y. Ma, P. Qi, J. Ju, Q. Wang, L. Hao, R. Wang, K. Sui, Y. Tan, ‘‘Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes’’, Composites Part B: Engineering, Vol. 162, pp. 671-677, 2019.
  • L. A. Pereira, A. B. Couto, D. A. L. Almeida, N. G. Ferreira, ‘‘Singular properties of boron-doped diamond/carbon fiber composite as anode in Brilliant Green dye electrochemical degradation’’, Diamond and Related Materials, Vol. 103, pp. 1-7, 2020.
  • N. P. Shetti, S. J. Malode, R. S. Malladi, S. L. Nargund, S. S. Shukla, T. M. Aminabhavi, ‘‘Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode’’, Microchemical Journal, Vol. 146, pp. 387-392, 2019.
  • J. Joseph, R. C. Radhakrishnan, J. K. Johnson, S. P. Joy, J. Thomas, ‘‘Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate’’, Materials Chemistry and Physics, Vol. 242, pp. 1-8, 2020.
  • H. N. Bhatti, Y. Safa, S. M. Yakout, O. H. Shair, M. Iqbal, A. Nazir, ‘‘Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies’’, International Journal of Biological Macromolecules, Vol. 150, pp. 861-870, 2020.
  • C. Puri, G. Sumana, ‘‘Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite’’, Applied Clay Science, Vol. 166, pp. 102-112, 2018.
  • E. Alver, A. Ü. Metin, F. Brouers, ‘‘Methylene blue adsorption on magnetic alginate/rice husk bio-composite’’, International Journal of Biological Macromolecules, Vol. 154, pp. 104-113, 2020.
  • F. Dhaouadi, L. Sellaoui, G. L. Dotto, A. Bonilla-Petriciolet, A. Erto, A. B. Lamine, ‘‘Adsorption of methylene blue on comminuted raw avocado seeds: Interpretation of the effect of salts via physical monolayer model’’, Journal of Molecular Liquids, Vol. 305, pp. 1-8, 2020.
  • A. H. Jawad, R. Razuan, J. N. Appaturi, L. D. Wilson, ‘‘Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation’’, Surfaces and Interfaces, Vol. 16, pp. 76-84, 2019.
  • D. S. Tong, C. W. Wu, M. O. Adebajo, G. C. Jin, W. H. Yu, S. F. Ji, C. H. Zhou, ‘‘Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/montmorillonite nanocomposites’’, Applied Clay Science, Vol. 161, pp. 256-264, 2018.
  • S. Idris, Y. A. Iyaka, M. M. Ndamitso, E. B. Mohammed, M. T. Umar, ‘‘Evaluation of kinetic models of copper and lead uptake from dye wastewater by activated pride of barbados shell’’, American Journal of Chemistry, Vol. 1, pp. 47–51, 2012.
  • Y. Ho, A. Ofomaja, ‘‘Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber’’, Journal of Hazardous Materials, Vol. 129, pp. 137–142, 2006.
  • F. B. Rebah, S. M. Siddeeg, ‘‘Cactus an eco-friendly material for wastewater treatment: a review’’, Journal of Materials and Environmental Science, Vol. 8, pp. 1770–1782, 2017.
  • H. A. Al-Husseiny, ‘‘Adsorption of methylene blue dye using low cost adsorbent of sawdust: batch and continues studies’’, Journal of University of Babylon, Vol. 22(2), pp. 296-310, 2014.
  • W. C. Wanyonyi, J. M. Onyari, P. M. Shiundu, ‘‘Adsorption of Congo red dye from aqueous solutions using roots of Eichhornia crassipes: kinetic and equilibrium studies’’, Energy Procedia, Vol. 50, pp. 862–869, 2014.
  • M. J. Ahmed, P. U. Okoye, E. H. Hummadi, B. H. Hameed, ‘‘High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue’’, Bioresource Technology, Vol. 278, pp. 159-164, 2019.
  • Ravi, Lalit M. Pandey, ‘‘Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue’’, Applied Clay Science, Vol. 169, pp. 102-111, 2019.
  • S. Langergren, B. K. Svenska, Zur theorie der sogenannten adsorption geloester stoffe, Veternskapsakad Handlingar, Vol. 24, pp. 1-39, 1898.
  • Y. S. Ho, G. Mckay, Kinetic models for the sorption of dye from aqueous solution by wood, Process Safety and Environmental Protection, Vol. 76, pp. 183-191, 1998.
  • W. J. Weber, J. C. Morris, Kinetics of adsorption on carbon from solution, Journal of the Sanitary Engineering Division, Vol. 89, pp. 31-60, 1963.
There are 33 citations in total.

Details

Primary Language English
Subjects Environmental Sciences, Environmental Engineering
Journal Section Research Articles
Authors

Ali Rıza Kul 0000-0001-9331-775X

Adnan Aldemir 0000-0001-9884-0961

Publication Date March 31, 2021
Submission Date October 13, 2020
Acceptance Date January 22, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Kul, A. R., & Aldemir, A. (2021). Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. Environmental Research and Technology, 4(1), 35-41. https://doi.org/10.35208/ert.810226
AMA Kul AR, Aldemir A. Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. ERT. March 2021;4(1):35-41. doi:10.35208/ert.810226
Chicago Kul, Ali Rıza, and Adnan Aldemir. “Isotherm, Kinetic and Thermodynamic Studies of Methylene Blue Adsorption Using Leucaena Leucocephala”. Environmental Research and Technology 4, no. 1 (March 2021): 35-41. https://doi.org/10.35208/ert.810226.
EndNote Kul AR, Aldemir A (March 1, 2021) Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. Environmental Research and Technology 4 1 35–41.
IEEE A. R. Kul and A. Aldemir, “Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala”, ERT, vol. 4, no. 1, pp. 35–41, 2021, doi: 10.35208/ert.810226.
ISNAD Kul, Ali Rıza - Aldemir, Adnan. “Isotherm, Kinetic and Thermodynamic Studies of Methylene Blue Adsorption Using Leucaena Leucocephala”. Environmental Research and Technology 4/1 (March 2021), 35-41. https://doi.org/10.35208/ert.810226.
JAMA Kul AR, Aldemir A. Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. ERT. 2021;4:35–41.
MLA Kul, Ali Rıza and Adnan Aldemir. “Isotherm, Kinetic and Thermodynamic Studies of Methylene Blue Adsorption Using Leucaena Leucocephala”. Environmental Research and Technology, vol. 4, no. 1, 2021, pp. 35-41, doi:10.35208/ert.810226.
Vancouver Kul AR, Aldemir A. Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. ERT. 2021;4(1):35-41.