Research Article
BibTex RIS Cite

Cefuroxime oxidation with new generation anodes: Evaluation of parameter effects, kinetics and total intermediate products

Year 2021, Volume: 4 Issue: 4, 317 - 328, 31.12.2021
https://doi.org/10.35208/ert.867139

Abstract

In this study, it was investigated the capability of new generation Sb-SnO2/Ti anodes, which are well known with their promising results in ozone generation and stability, to remove cefuroxime (CXM) antibiotic from aqueous solution. Comparison of different electrolyte types were performed for this purpose; NaCl and KCl. KCl increased the conductivity and caused to the formation of important oxidants and thus, affected electrochemical oxidation reactions more positively than NaCl. It was obtained that, pH parameter has a very important effect on the removal efficiencies in this process and higher efficiencies were obtained at the natural pH value (pH 7) of the aqueous solution. It was thought that, this was probably because the reactions occurred in aqueous solution mostly instead of anodic surface. Furthermore, the removal efficiencies increased with current density increase and the best results were obtained at 50 mA/cm2 current density. As a result of the study, at the end of 60 min of reaction, the aqueous solution containing cefuroxime antibiotic was completely treated without any toxic intermediate product formation with 750 mg/L KCl addition, at pH 7 and 50 mA/cm2 current density.

Supporting Institution

Bursa Uludağ Universitesi

Project Number

OUAP (MH)-2018/8

Thanks

The author acknowledge the support of Bursa Uludag University Research Projects Department for this study (Project No. OUAP (MH)-2018/8).

References

  • [1] A. Fleming, "The discovery of penicillin", British Medical Bulletin, Vol. 2 (1), pp. 4-5, 1944.
  • [2] S. Manzetti, R. Ghisi, "The environmental release and fate of antibiotics", Marine pollution bulletin, Vol. 79 (1-2), pp. 7-15, 2014.
  • [3] T. Yonar, A. Kurt, "Treatability studies of hospital wastewaters with AOPs by Taguchi’s experimental design", Glob Nest J, Vol. 19 pp. 505-510, 2017.
  • [4] M.M. Amin, M.M.A. Moazzam, "Use of a UV/H2O2 process for posttreatment of a biologically treated composting leachate", Turkish Journal of Engineering and Environmental Sciences, Vol. 38 (3), pp. 404-410, 2016.
  • [5] I.M. Statistics, "Türkiye İlaç ve Tıbbi Cihaz Kurumu Akılcı İlaç Kullanımı ve İlaç Tedarik Yönetimi Dairesi", 2013.
  • [6] I.M. Statistics, "Türkiye İlaç ve Tıbbi Cihaz Kurumu Akılcı İlaç Kullanımı ve İlaç Tedarik Yönetimi Dairesi", 2014.
  • [7] D. Liang, Y. Wang, Y. Wang, "A practical synthesis of deuterium-labeled cefuroxime", Mendeleev communications, Vol. 4 (25), pp. 252-253, 2015.
  • [8] J. Fischer, C.R. Ganellin, A. Ganesan, J. Proudfoot. Analogue-based drug discovery, Wiley-VCH Hoboken, NJ, 2010.
  • [9] AHRQ, "Medical Expenditure Panel Survey (MEPS) 2008-2018 ", 2018.
  • [10] C.F. Sio, W.J. Quax, "Improved β-lactam acylases and their use as industrial biocatalysts", Current opinion in biotechnology, Vol. 15 (4), pp. 349-355, 2004.
  • [11] NCBI, "PubChem Compound Summary for CID 41375", 2020.
  • [12] DIP, "https://en.wikipedia.org/wiki/Cefuroxime", 2020.
  • [13] S. Kim, D.S. Aga, "Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants", Journal of Toxicology and Environmental Health, Part B, Vol. 10 (8), pp. 559-573, 2007.
  • [14] P. Sukul, M. Spiteller, Fluoroquinolone antibiotics in the environment, in: Reviews of environmental contamination and toxicology, Springer, pp. 131-162, 2007.
  • [15] I.A. Balcioglu, I. Arslan, "Treatment of textile waste water by heterogenous photocatalytic oxidation processes", Environmental technology, Vol. 18 (10), pp. 1053-1059, 1997.
  • [16] X. Chang, M.T. Meyer, X. Liu, Q. Zhao, H. Chen, J.-a. Chen, Z. Qiu, L. Yang, J. Cao, W. Shu, "Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China", Environmental pollution, Vol. 158 (5), pp. 1444-1450, 2010.
  • [17] H. Bouya, M. Errami, R. Salghi, L. Bazzi, A. Zarrouk, S. Al-Deyab, B. Hammouti, L. Bazzi, A. Chakir, "Electrochemical degradation of cypermethrin pesticide on a SnO2 anode", Int J Electrochem Sci, Vol. 7 (4), pp. 7453, 2012.
  • [18] W. Haenni, H. Baumann, C. Comninellis, D. Gandini, P. Niedermann, A. Perret, N. Skinner, "Diamond-sensing microdevices for environmental control and analytical applications", Diamond and related materials, Vol. 7 (2-5), pp. 569-574, 1998.
  • [19] J.S. Foord, K.B. Holt, R.G. Compton, F. Marken, D.-H. Kim, "Mechanistic aspects of the sonoelectrochemical degradation of the reactive dye Procion Blue at boron-doped diamond electrodes", Diamond and related materials, Vol. 10 (3-7), pp. 662-666, 2001.
  • [20] K.J. Choi, S.G. Kim, C.W. Kim, S.H. Kim, "Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A", Chemosphere, Vol. 58 (11), pp. 1535-1545, 2005.
  • [21] P. Christensen, W. Lin, H. Christensen, A. Imkum, J. Jin, G. Li, C. Dyson, "Room temperature, electrochemical generation of ozone with 50% current efficiency in 0.5 m sulfuric acid at cell voltages< 3V", Ozone: science & engineering, Vol. 31 (4), pp. 287-293, 2009.
  • [22] X. Yang, R. Zou, F. Huo, D. Cai, D. Xiao, "Preparation and characterization of Ti/SnO2–Sb2O3–Nb2O5/PbO2 thin film as electrode material for the degradation of phenol", Journal of hazardous materials, Vol. 164 (1), pp. 367-373, 2009.
  • [23] P.E. Stackelberg, E.T. Furlong, M.T. Meyer, S.D. Zaugg, A.K. Henderson, D.B. Reissman, "Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant", Science of the total environment, Vol. 329 (1-3), pp. 99-113, 2004.
  • [24] L.H. Santos, M. Gros, S. Rodriguez-Mozaz, C. Delerue-Matos, A. Pena, D. Barceló, M.C.B. Montenegro, "Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals", Science of the Total Environment, Vol. 461 pp. 302-316, 2013.
  • [25] J. Wang, D. Duncan, Z. Shi, B. Zhang, "WEB-based gene set analysis toolkit (WebGestalt): update 2013", Nucleic acids research, Vol. 41 (W1), pp. W77-W83, 2013.
  • [26] L. Yao, Y. Wang, L. Tong, Y. Li, Y. Deng, W. Guo, Y. Gan, "Seasonal variation of antibiotics concentration in the aquatic environment: a case study at Jianghan Plain, central China", Science of the total environment, Vol. 527 pp. 56-64, 2015.
  • [27] A.G. Trovo, R.F.P. Nogueira, A. Agüera, A.R. Fernandez-Alba, S. Malato, "Degradation of the antibiotic amoxicillin by photo-Fenton process–chemical and toxicological assessment", Water research, Vol. 45 (3), pp. 1394-1402, 2011.
  • [28] E.S. Elmolla, M. Chaudhuri, "The feasibility of using combined TiO2 photocatalysis-SBR process for antibiotic wastewater treatment", Desalination, Vol. 272 (1-3), pp. 218-224, 2011.
  • [29] Y.-H. Wang, S. Cheng, K.-Y. Chan, X.Y. Li, "Electrolytic generation of ozone on antimony-and nickel-doped tin oxide electrode", Journal of the Electrochemical Society, Vol. 152 (11), pp. D197, 2005.
  • [30] P.A. Christensen, K. Zakaria, H. Christensen, T. Yonar, "The effect of Ni and Sb oxide precursors, and of Ni composition, synthesis conditions and operating parameters on the activity, selectivity and durability of Sb-doped SnO2 anodes modified with Ni", Journal of the Electrochemical Society, Vol. 160 (8), pp. H405-H413, 2013.
  • [31] F. İlhan, U. Kurt, Ö. Apaydin, E. Arslankaya, M.T. Gönüllü, "Elektrokimyasal aritim ve uygulamalari: Kati Atik Sizinti Suyu Çalişmasi", 2007.
  • [32] E. Isarain-Chávez, M.D. Baró, E. Rossinyol, U. Morales-Ortiz, J. Sort, E. Brillas, E. Pellicer, "Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes", Electrochimica Acta, Vol. 244 pp. 199-208, 2017.
  • [33] F. Souza, S. Quijorna, M. Lanza, C. Sáez, P. Cañizares, M. Rodrigo, "Applicability of electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea herbicide", Catalysis Today, Vol. 280 pp. 192-198, 2017.
  • [34] D.C. De Moura, C.K.C. De Araújo, C.L. Zanta, R. Salazar, C.A. Martínez-Huitle, "Active chlorine species electrogenerated on Ti/Ru0. 3Ti0. 7O2 surface: electrochemical behavior, concentration determination and their application", Journal of Electroanalytical Chemistry, Vol. 731 pp. 145-152, 2014.
  • [35] W.E. Federation, A.P.H. Association, "Standard methods for the examination of water and wastewater", American Public Health Association (APHA): Washington, DC, USA, 2005.
  • [36] J.B. Parsa, M. Golmirzaei, M. Abbasi, "Degradation of azo dye CI Acid Red 18 in aqueous solution by ozone-electrolysis process", Journal of Industrial and Engineering Chemistry, Vol. 20 (2), pp. 689-694, 2014.
  • [37] I.M.S. Pillai, A.K. Gupta, "Anodic oxidation of coke oven wastewater: multiparameter optimization for simultaneous removal of cyanide, COD and phenol", Journal of Environmental Management, Vol. 176 pp. 45-53, 2016.
  • [38] Z. Shen, D. Wu, J. Yang, T. Yuan, W. Wang, J. Jia, "Methods to improve electrochemical treatment effect of dye wastewater", Journal of Hazardous Materials, Vol. 131 (1-3), pp. 90-97, 2006.
  • [39] X. Tu, S. Xiao, Y. Song, D. Zhang, P. Zeng, "Treatment of simulated berberine wastewater by electrochemical process with Pt/Ti anode", Environmental Earth Sciences, Vol. 73 (9), pp. 4957-4966, 2015.
  • [40] K. Arihara, C. Terashima, A. Fujishima, "Electrochemical production of high-concentration ozone-water using freestanding perforated diamond electrodes", Journal of the Electrochemical Society, Vol. 154 (4), pp. E71, 2007.
  • [41] Y. Deng, J.D. Englehardt, "Electrochemical oxidation for landfill leachate treatment", Waste management, Vol. 27 (3), pp. 380-388, 2007.
  • [42] Ö. Sivrioğlu, T. Yonar, "Electrochemical Degradation of Textile Effluent Using Novel Ozone Generating Sn-Sb-Ni Anodes", International Journal of Environmental Engineering, Vol. 3 (3), pp. 55-59, 2016.
  • [43] S.-A. Cheng, K.-Y. Chan, "Electrolytic generation of ozone on an antimony-doped tin dioxide coated electrode", Electrochemical and Solid State Letters, Vol. 7 (3), pp. D4, 2004.
  • [44] L.S. Andrade, L.A.M. Ruotolo, R.C. Rocha-Filho, N. Bocchi, S.R. Biaggio, J. Iniesta, V. García-Garcia, V. Montiel, "On the performance of Fe and Fe, F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater", Chemosphere, Vol. 66 (11), pp. 2035-2043, 2007.
  • [45] A. Cabeza, A. Urtiaga, M.-J. Rivero, I. Ortiz, "Ammonium removal from landfill leachate by anodic oxidation", Journal of hazardous materials, Vol. 144 (3), pp. 715-719, 2007.
  • [46] M. Abbasi, A.R. Soleymani, J.B. Parsa, "Degradation of Rhodamine B by an electrochemical ozone generating system consist of a Ti anode coated with nanocomposite of Sn–Sb–Ni oxide", Process Safety and Environmental Protection, Vol. 94 pp. 140-148, 2015.
  • [47] I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, "Electrochemical advanced oxidation processes: today and tomorrow. A review", Environmental Science and Pollution Research, Vol. 21 (14), pp. 8336-8367, 2014.
  • [48] P. Duan, X. Jia, J. Lin, R. Xia, "Electro-oxidation of ceftazidime in real municipal wastewater using PbO 2–Ce and SnO 2–Sb electrodes: influence of electrolyte and degradation pathway", Journal of Applied Electrochemistry, Vol. pp. 1-13, 2020.
  • [49] M.S. Yahya, M. El Karbane, N. Oturan, K. El Kacemi, M.A. Oturan, "Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: kinetics and intermediate products analysis", Environmental technology, Vol. 37 (10), pp. 1276-1287, 2016.
  • [50] M. Buyukada, "Turbidity and COD removal from leather effluents using TiO2–assisted photocatalytic-ozonation by response surface methodology", Environmental Research and Technology, Vol. 1 (3), pp. 1-10, 2018.
Year 2021, Volume: 4 Issue: 4, 317 - 328, 31.12.2021
https://doi.org/10.35208/ert.867139

Abstract

Project Number

OUAP (MH)-2018/8

References

  • [1] A. Fleming, "The discovery of penicillin", British Medical Bulletin, Vol. 2 (1), pp. 4-5, 1944.
  • [2] S. Manzetti, R. Ghisi, "The environmental release and fate of antibiotics", Marine pollution bulletin, Vol. 79 (1-2), pp. 7-15, 2014.
  • [3] T. Yonar, A. Kurt, "Treatability studies of hospital wastewaters with AOPs by Taguchi’s experimental design", Glob Nest J, Vol. 19 pp. 505-510, 2017.
  • [4] M.M. Amin, M.M.A. Moazzam, "Use of a UV/H2O2 process for posttreatment of a biologically treated composting leachate", Turkish Journal of Engineering and Environmental Sciences, Vol. 38 (3), pp. 404-410, 2016.
  • [5] I.M. Statistics, "Türkiye İlaç ve Tıbbi Cihaz Kurumu Akılcı İlaç Kullanımı ve İlaç Tedarik Yönetimi Dairesi", 2013.
  • [6] I.M. Statistics, "Türkiye İlaç ve Tıbbi Cihaz Kurumu Akılcı İlaç Kullanımı ve İlaç Tedarik Yönetimi Dairesi", 2014.
  • [7] D. Liang, Y. Wang, Y. Wang, "A practical synthesis of deuterium-labeled cefuroxime", Mendeleev communications, Vol. 4 (25), pp. 252-253, 2015.
  • [8] J. Fischer, C.R. Ganellin, A. Ganesan, J. Proudfoot. Analogue-based drug discovery, Wiley-VCH Hoboken, NJ, 2010.
  • [9] AHRQ, "Medical Expenditure Panel Survey (MEPS) 2008-2018 ", 2018.
  • [10] C.F. Sio, W.J. Quax, "Improved β-lactam acylases and their use as industrial biocatalysts", Current opinion in biotechnology, Vol. 15 (4), pp. 349-355, 2004.
  • [11] NCBI, "PubChem Compound Summary for CID 41375", 2020.
  • [12] DIP, "https://en.wikipedia.org/wiki/Cefuroxime", 2020.
  • [13] S. Kim, D.S. Aga, "Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants", Journal of Toxicology and Environmental Health, Part B, Vol. 10 (8), pp. 559-573, 2007.
  • [14] P. Sukul, M. Spiteller, Fluoroquinolone antibiotics in the environment, in: Reviews of environmental contamination and toxicology, Springer, pp. 131-162, 2007.
  • [15] I.A. Balcioglu, I. Arslan, "Treatment of textile waste water by heterogenous photocatalytic oxidation processes", Environmental technology, Vol. 18 (10), pp. 1053-1059, 1997.
  • [16] X. Chang, M.T. Meyer, X. Liu, Q. Zhao, H. Chen, J.-a. Chen, Z. Qiu, L. Yang, J. Cao, W. Shu, "Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China", Environmental pollution, Vol. 158 (5), pp. 1444-1450, 2010.
  • [17] H. Bouya, M. Errami, R. Salghi, L. Bazzi, A. Zarrouk, S. Al-Deyab, B. Hammouti, L. Bazzi, A. Chakir, "Electrochemical degradation of cypermethrin pesticide on a SnO2 anode", Int J Electrochem Sci, Vol. 7 (4), pp. 7453, 2012.
  • [18] W. Haenni, H. Baumann, C. Comninellis, D. Gandini, P. Niedermann, A. Perret, N. Skinner, "Diamond-sensing microdevices for environmental control and analytical applications", Diamond and related materials, Vol. 7 (2-5), pp. 569-574, 1998.
  • [19] J.S. Foord, K.B. Holt, R.G. Compton, F. Marken, D.-H. Kim, "Mechanistic aspects of the sonoelectrochemical degradation of the reactive dye Procion Blue at boron-doped diamond electrodes", Diamond and related materials, Vol. 10 (3-7), pp. 662-666, 2001.
  • [20] K.J. Choi, S.G. Kim, C.W. Kim, S.H. Kim, "Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A", Chemosphere, Vol. 58 (11), pp. 1535-1545, 2005.
  • [21] P. Christensen, W. Lin, H. Christensen, A. Imkum, J. Jin, G. Li, C. Dyson, "Room temperature, electrochemical generation of ozone with 50% current efficiency in 0.5 m sulfuric acid at cell voltages< 3V", Ozone: science & engineering, Vol. 31 (4), pp. 287-293, 2009.
  • [22] X. Yang, R. Zou, F. Huo, D. Cai, D. Xiao, "Preparation and characterization of Ti/SnO2–Sb2O3–Nb2O5/PbO2 thin film as electrode material for the degradation of phenol", Journal of hazardous materials, Vol. 164 (1), pp. 367-373, 2009.
  • [23] P.E. Stackelberg, E.T. Furlong, M.T. Meyer, S.D. Zaugg, A.K. Henderson, D.B. Reissman, "Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant", Science of the total environment, Vol. 329 (1-3), pp. 99-113, 2004.
  • [24] L.H. Santos, M. Gros, S. Rodriguez-Mozaz, C. Delerue-Matos, A. Pena, D. Barceló, M.C.B. Montenegro, "Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals", Science of the Total Environment, Vol. 461 pp. 302-316, 2013.
  • [25] J. Wang, D. Duncan, Z. Shi, B. Zhang, "WEB-based gene set analysis toolkit (WebGestalt): update 2013", Nucleic acids research, Vol. 41 (W1), pp. W77-W83, 2013.
  • [26] L. Yao, Y. Wang, L. Tong, Y. Li, Y. Deng, W. Guo, Y. Gan, "Seasonal variation of antibiotics concentration in the aquatic environment: a case study at Jianghan Plain, central China", Science of the total environment, Vol. 527 pp. 56-64, 2015.
  • [27] A.G. Trovo, R.F.P. Nogueira, A. Agüera, A.R. Fernandez-Alba, S. Malato, "Degradation of the antibiotic amoxicillin by photo-Fenton process–chemical and toxicological assessment", Water research, Vol. 45 (3), pp. 1394-1402, 2011.
  • [28] E.S. Elmolla, M. Chaudhuri, "The feasibility of using combined TiO2 photocatalysis-SBR process for antibiotic wastewater treatment", Desalination, Vol. 272 (1-3), pp. 218-224, 2011.
  • [29] Y.-H. Wang, S. Cheng, K.-Y. Chan, X.Y. Li, "Electrolytic generation of ozone on antimony-and nickel-doped tin oxide electrode", Journal of the Electrochemical Society, Vol. 152 (11), pp. D197, 2005.
  • [30] P.A. Christensen, K. Zakaria, H. Christensen, T. Yonar, "The effect of Ni and Sb oxide precursors, and of Ni composition, synthesis conditions and operating parameters on the activity, selectivity and durability of Sb-doped SnO2 anodes modified with Ni", Journal of the Electrochemical Society, Vol. 160 (8), pp. H405-H413, 2013.
  • [31] F. İlhan, U. Kurt, Ö. Apaydin, E. Arslankaya, M.T. Gönüllü, "Elektrokimyasal aritim ve uygulamalari: Kati Atik Sizinti Suyu Çalişmasi", 2007.
  • [32] E. Isarain-Chávez, M.D. Baró, E. Rossinyol, U. Morales-Ortiz, J. Sort, E. Brillas, E. Pellicer, "Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes", Electrochimica Acta, Vol. 244 pp. 199-208, 2017.
  • [33] F. Souza, S. Quijorna, M. Lanza, C. Sáez, P. Cañizares, M. Rodrigo, "Applicability of electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea herbicide", Catalysis Today, Vol. 280 pp. 192-198, 2017.
  • [34] D.C. De Moura, C.K.C. De Araújo, C.L. Zanta, R. Salazar, C.A. Martínez-Huitle, "Active chlorine species electrogenerated on Ti/Ru0. 3Ti0. 7O2 surface: electrochemical behavior, concentration determination and their application", Journal of Electroanalytical Chemistry, Vol. 731 pp. 145-152, 2014.
  • [35] W.E. Federation, A.P.H. Association, "Standard methods for the examination of water and wastewater", American Public Health Association (APHA): Washington, DC, USA, 2005.
  • [36] J.B. Parsa, M. Golmirzaei, M. Abbasi, "Degradation of azo dye CI Acid Red 18 in aqueous solution by ozone-electrolysis process", Journal of Industrial and Engineering Chemistry, Vol. 20 (2), pp. 689-694, 2014.
  • [37] I.M.S. Pillai, A.K. Gupta, "Anodic oxidation of coke oven wastewater: multiparameter optimization for simultaneous removal of cyanide, COD and phenol", Journal of Environmental Management, Vol. 176 pp. 45-53, 2016.
  • [38] Z. Shen, D. Wu, J. Yang, T. Yuan, W. Wang, J. Jia, "Methods to improve electrochemical treatment effect of dye wastewater", Journal of Hazardous Materials, Vol. 131 (1-3), pp. 90-97, 2006.
  • [39] X. Tu, S. Xiao, Y. Song, D. Zhang, P. Zeng, "Treatment of simulated berberine wastewater by electrochemical process with Pt/Ti anode", Environmental Earth Sciences, Vol. 73 (9), pp. 4957-4966, 2015.
  • [40] K. Arihara, C. Terashima, A. Fujishima, "Electrochemical production of high-concentration ozone-water using freestanding perforated diamond electrodes", Journal of the Electrochemical Society, Vol. 154 (4), pp. E71, 2007.
  • [41] Y. Deng, J.D. Englehardt, "Electrochemical oxidation for landfill leachate treatment", Waste management, Vol. 27 (3), pp. 380-388, 2007.
  • [42] Ö. Sivrioğlu, T. Yonar, "Electrochemical Degradation of Textile Effluent Using Novel Ozone Generating Sn-Sb-Ni Anodes", International Journal of Environmental Engineering, Vol. 3 (3), pp. 55-59, 2016.
  • [43] S.-A. Cheng, K.-Y. Chan, "Electrolytic generation of ozone on an antimony-doped tin dioxide coated electrode", Electrochemical and Solid State Letters, Vol. 7 (3), pp. D4, 2004.
  • [44] L.S. Andrade, L.A.M. Ruotolo, R.C. Rocha-Filho, N. Bocchi, S.R. Biaggio, J. Iniesta, V. García-Garcia, V. Montiel, "On the performance of Fe and Fe, F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater", Chemosphere, Vol. 66 (11), pp. 2035-2043, 2007.
  • [45] A. Cabeza, A. Urtiaga, M.-J. Rivero, I. Ortiz, "Ammonium removal from landfill leachate by anodic oxidation", Journal of hazardous materials, Vol. 144 (3), pp. 715-719, 2007.
  • [46] M. Abbasi, A.R. Soleymani, J.B. Parsa, "Degradation of Rhodamine B by an electrochemical ozone generating system consist of a Ti anode coated with nanocomposite of Sn–Sb–Ni oxide", Process Safety and Environmental Protection, Vol. 94 pp. 140-148, 2015.
  • [47] I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, "Electrochemical advanced oxidation processes: today and tomorrow. A review", Environmental Science and Pollution Research, Vol. 21 (14), pp. 8336-8367, 2014.
  • [48] P. Duan, X. Jia, J. Lin, R. Xia, "Electro-oxidation of ceftazidime in real municipal wastewater using PbO 2–Ce and SnO 2–Sb electrodes: influence of electrolyte and degradation pathway", Journal of Applied Electrochemistry, Vol. pp. 1-13, 2020.
  • [49] M.S. Yahya, M. El Karbane, N. Oturan, K. El Kacemi, M.A. Oturan, "Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: kinetics and intermediate products analysis", Environmental technology, Vol. 37 (10), pp. 1276-1287, 2016.
  • [50] M. Buyukada, "Turbidity and COD removal from leather effluents using TiO2–assisted photocatalytic-ozonation by response surface methodology", Environmental Research and Technology, Vol. 1 (3), pp. 1-10, 2018.
There are 50 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Ayşe Kurt 0000-0003-0085-7517

Project Number OUAP (MH)-2018/8
Early Pub Date December 31, 2021
Publication Date December 31, 2021
Submission Date January 24, 2021
Acceptance Date October 14, 2021
Published in Issue Year 2021 Volume: 4 Issue: 4

Cite

APA Kurt, A. (2021). Cefuroxime oxidation with new generation anodes: Evaluation of parameter effects, kinetics and total intermediate products. Environmental Research and Technology, 4(4), 317-328. https://doi.org/10.35208/ert.867139
AMA Kurt A. Cefuroxime oxidation with new generation anodes: Evaluation of parameter effects, kinetics and total intermediate products. ERT. December 2021;4(4):317-328. doi:10.35208/ert.867139
Chicago Kurt, Ayşe. “Cefuroxime Oxidation With New Generation Anodes: Evaluation of Parameter Effects, Kinetics and Total Intermediate Products”. Environmental Research and Technology 4, no. 4 (December 2021): 317-28. https://doi.org/10.35208/ert.867139.
EndNote Kurt A (December 1, 2021) Cefuroxime oxidation with new generation anodes: Evaluation of parameter effects, kinetics and total intermediate products. Environmental Research and Technology 4 4 317–328.
IEEE A. Kurt, “Cefuroxime oxidation with new generation anodes: Evaluation of parameter effects, kinetics and total intermediate products”, ERT, vol. 4, no. 4, pp. 317–328, 2021, doi: 10.35208/ert.867139.
ISNAD Kurt, Ayşe. “Cefuroxime Oxidation With New Generation Anodes: Evaluation of Parameter Effects, Kinetics and Total Intermediate Products”. Environmental Research and Technology 4/4 (December 2021), 317-328. https://doi.org/10.35208/ert.867139.
JAMA Kurt A. Cefuroxime oxidation with new generation anodes: Evaluation of parameter effects, kinetics and total intermediate products. ERT. 2021;4:317–328.
MLA Kurt, Ayşe. “Cefuroxime Oxidation With New Generation Anodes: Evaluation of Parameter Effects, Kinetics and Total Intermediate Products”. Environmental Research and Technology, vol. 4, no. 4, 2021, pp. 317-28, doi:10.35208/ert.867139.
Vancouver Kurt A. Cefuroxime oxidation with new generation anodes: Evaluation of parameter effects, kinetics and total intermediate products. ERT. 2021;4(4):317-28.