Review
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 1, 51 - 57, 22.06.2020

Abstract

References

  • 1. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 15: 389-395. 2. Carvalho AdO, Gomes VM. Plant defensins—prospects for the biological functions and biotechnological properties. Peptides 2009; 30: 1007-1020.
  • 3. Reddy K, Yedery R, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 2004; 24: 536-547.
  • 4. Nordström R, Malmsten M. Delivery systems for antimicrobial peptides. Adv Colloid Interface Sci 2017; 242: 17-34.
  • 5. Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev 2006; 19: 491-511.
  • 6. De Caleya RF, Gonzalez-Pascual B, García-Olmedo F, Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 1972; 23: 998-1000.
  • 7. Pelegrini PB, Franco OL. Plant gamma-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins. Int J Biochem Cell Biol 2005; 37: 2239-2253.
  • 8. Witkowska D, Bartyś A, Gamian A. Defensins and cathelicidins as natural peptide antibiotics. Postępy Hig Med Dośw 2007; 62: 694-707.
  • 9. Nawrot R, Barylski J, Nowicki G, et al. Plant antimicrobial peptides. Folia Microbiol 2014; 59: 181-196.
  • 10. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera a visualization system for exploratory research and analysis. J Comput Chem 2004; 25 (13):1605-1612.
  • 11. Hu F, Wu Q, Song S, et al. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens. BMC Microbiol 2016; 16: 287.
  • 12. Zhao X, Wu H, Lu H, Li G, Huang Q. LAMP: a database linking antimicrobial peptides. PLoS One 2013; 8: e66557.
  • 13. Liu X, Cao X, Wang S, et al. Identification of Ly2 members as antimicrobial peptides from zebrafish Danio rerio. Biosci Rep 2017; 37 (1): BSR20160265.
  • 14. Pelegrini P, del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF. Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 2011; 2011: 1-9.
  • 15. Stec B. Plant thionins–the structural perspective. Cell Mol Life Sci CMLS 2006; 63: 1370-1385.
  • 16. Fujimura M, Ideguchi M, Minami Y, Watanabe K, Tadera K. Amino acid sequence and antimicrobial activity of chitin-binding peptides, Pp-AMP 1 and Pp-AMP 2, from Japanese bamboo shoots (Phyllostachys pubescens). Biosci Biotechnol Biochem 2005; 69 (3): 642-645.
  • 17. Fujimura M, Ideguchi M, Minami Y, Watanabe K, Tadera K. Purification, characterization, and sequencing of novel antimicrobial peptides, Tu-AMP 1 and Tu-AMP 2, from bulbs of tulip (Tulipa gesneriana L.). Biosci Biotechnol Biochem 2004; 68 (3): 571-577.
  • 18. Terras FR, Eggermont K, Kovaleva V, et al. Small cysteine-rich antifungal proteins from radish: their role in host defense. The Plant Cell 1995; 7 (5): 573-588.
  • 19. Hegedus N, Marx F. Antifungial proteins: more than antimicrobials? Fungal Biol Rev 2013; 26: 132-145.
  • 20. Houlne G, Meyer B, Schantz R. Alteration of the expression of a plant defensin gene by exon shuffling in bell pepper (Capsicum annuum L.). Mol General Gen 1998; 259 (5): 504-510.
  • 21. Zhang Y, Lewis K. Fabatins: new antimicrobial plant peptides. FEMS Microbiol Lett 1997; 149 (1): 5964.
  • 22. Craik DJ. Discovery and applications of plant cyclotides. Toxicon 2010; 57: 1092-1102.
  • 23. Gould A, Ji Y, L Aboye T, Camarero AJ. Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr Pharma Design 2011; 17 (38): 4294-4307.
  • 24. Daly NL, Clark RJ, Plan MR, Craik DJ. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Biochem J 2006; 393 (3): 619-626.
  • 25. Derua R, Gustafson KR, Pannell LK. Analysis of the disulfide linkage pattern in circulin A and B, HIV inhibitory macrocyclic peptides. Biochem Biophysic Res Commun 1996; 228 (2): 632-638. 26. Segura A, Moreno M, Madueño F, Molina A, GarcíaOlmedo F. Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant-Microbe Interact 1999; 12 (1): 16-23.
  • 27. Berrocal-Lobo M, Segura A, Moreno M, et al. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 2002; 128 (3): 951-961.
  • 28. Daneshmand F, Zare-Zardini H, Ebrahimi L. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits. Natural Product Res 2013; 27 (24): 2292-2296.
  • 29. VanParijs J, Broekaert WF, Goldstein IJ, Peumans WJ. Hevein an antifungal protein from rubber-tree (Hevea braziliensis) latex. Planta 1991; 183:258-264.
  • 30. Broekaert WF, Marien W, Terras FR, et al. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochem 1992; 31 (17): 4308-4314.
  • 31. Yang X, Xiao Y, Pei Y and Zhen C. LJAFP, a novel nonspecific lipid transfer protein-like antimicrobial protein from motherwort (Leonurus japonicus) confers disease resistance against phytopathogenic fungi and bacterium in transgenic tobacco. Submitted (MAR-2005) to the EMBL/GenBank/DDBJ databases.
  • 32. Patel SU, Osborn R, Rees S, Thornton JM. Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry 1998 37:983–990.
  • 33. Cammue BP, De Bolle MF, Terras FR, et al. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L seeds. J Biol Chem 1992; 267:2228–2233.
  • 34. Gao GH, Liu W, Dai JX, et al. Solution structure of PAFP-S a new knottin-type antifungal peptide from the seeds of Phytolacca americana. Biochemistry 2001; 40:10973– 10978.
  • 35. Chouabe C, Eyraud V, Da Silva P et al. New mode of action for a knottin protein bioinsecticide: pea albümin 1 subunit b (PA1b) is the first peptidic inhibitör of V-ATPase. J Biol Chem 2011;286:36291–36296.
  • 36. Cândido Ede S, Pinto MF, Pelegrini PBet al. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. FASEB J 2011; 25:3290–3305.
  • 37. Yang X, Xiao Y, Wang X, Pei Y. Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco. Appl Environ Microbiol 2007; 73:939–946.
  • 38. Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES. Cellpenetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des 2012; 80:639–646.
  • 39. Greewood KP, Daly NL, Brown DL, Stow JL, Craik DJ. The cyclic cystine knot mini protein MCoTI-II is internalized into cells by macropinocytosis. Int J Biochem Cell Biol 2007; 39:2252–2264
  • 40. Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P. Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plants cell. Chembiochem 2011; 12:132–137.
  • 41. Hong M, Su Y. Structure and dynamics of cationic membrane peptides and proteins insights from solid-state NMR. Protein Sci 2011; 20: 641–655.
  • 42. Veldhoen S, Laufer SD, Restle T. Recent developments in peptide based nucleic acid delivery. Int J Mol Sci 2008; 9:1276–1320.
  • 43. Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. BBA-Biomembranes 1999; 1462 (1): 29-54.
  • 44. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003; 55 (1): 27-55.
  • 45. Gazit E, Boman A, Boman HG, Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochem 1995; 34 (36): 11479-11488.
  • 46. Thomma BP, Cammue BP, Thevissen K. Plant defensins. Planta 2002; 216:193–202.
  • 47. Koo JC, Chun HJ, Park HC et al. Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol Biol 2002; 50:441–452.
  • 48. Gao A, Hakimi SM, Mittanck CA et al. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 2000; 18:1307–1310.
  • 49. Clark RJ, Daly NL, Craik DJ. Structural plasticity of the cycliccystine-knot framework: implications for biological activity and drug design. Biochem J 2006; 394:85–93.
  • 50. Pelegrini PB, Quirino BF, Franco OL. Plantcyclotides:anunusual class of defense compounds. Peptides 2007; 28:1475–1481.

İLACA DİRENÇLİ MİKROORGANİZMALARA KARŞI YENİ BİR YAKLAŞIM: GELECEĞİN ANTİBİYOTİKLERİ, BİTKİSEL ANTİMİKROBİYAL PEPTİDLER

Year 2020, Volume: 7 Issue: 1, 51 - 57, 22.06.2020

Abstract

Bitki antimikrobiyal peptitleri (AMP'ler), bitkilerin bariyer savunma sisteminin bir bileşenidir. Pek çok bitki türünün köklerinden, tohumlarından, çiçeklerinden, saplarından ve yapraklarından izole edilebilirler. Doğal antimikrobiyal moleküllerin değerli kaynağı olarak Bitki AMP'leri, hem fitopatojenlere karşı hem de insanlar için patojen olan bakterilerin zar geçirgenliği, DNA, RNA ve protein sentezine müdahale gibi etkilerle çoklu direnç geliştirmesini önlemek amacıyla uygun bir yaklaşım sağlayabilen antimikrobiyal aktiviteye sahiptirler. Bu nedenle, bitki AMP'leri önemli farmasötik ve biyoteknolojik uygulamalarda umut verici antibiyotik bileşikler olarak kabul edilerek, terapötik ve koruyucu ajanlar olarak kullanılabilirler. Bu derleme, bitki AMP’lerinin yapısal özellikleriyle birllikte, antibakteriyel-antifungal etki mekanizması ve eczacılık ve biyoteknoloji uygulamalarında kullanımlarına genel bir bakış sunmaktadır.

References

  • 1. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 15: 389-395. 2. Carvalho AdO, Gomes VM. Plant defensins—prospects for the biological functions and biotechnological properties. Peptides 2009; 30: 1007-1020.
  • 3. Reddy K, Yedery R, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 2004; 24: 536-547.
  • 4. Nordström R, Malmsten M. Delivery systems for antimicrobial peptides. Adv Colloid Interface Sci 2017; 242: 17-34.
  • 5. Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev 2006; 19: 491-511.
  • 6. De Caleya RF, Gonzalez-Pascual B, García-Olmedo F, Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 1972; 23: 998-1000.
  • 7. Pelegrini PB, Franco OL. Plant gamma-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins. Int J Biochem Cell Biol 2005; 37: 2239-2253.
  • 8. Witkowska D, Bartyś A, Gamian A. Defensins and cathelicidins as natural peptide antibiotics. Postępy Hig Med Dośw 2007; 62: 694-707.
  • 9. Nawrot R, Barylski J, Nowicki G, et al. Plant antimicrobial peptides. Folia Microbiol 2014; 59: 181-196.
  • 10. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera a visualization system for exploratory research and analysis. J Comput Chem 2004; 25 (13):1605-1612.
  • 11. Hu F, Wu Q, Song S, et al. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens. BMC Microbiol 2016; 16: 287.
  • 12. Zhao X, Wu H, Lu H, Li G, Huang Q. LAMP: a database linking antimicrobial peptides. PLoS One 2013; 8: e66557.
  • 13. Liu X, Cao X, Wang S, et al. Identification of Ly2 members as antimicrobial peptides from zebrafish Danio rerio. Biosci Rep 2017; 37 (1): BSR20160265.
  • 14. Pelegrini P, del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF. Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 2011; 2011: 1-9.
  • 15. Stec B. Plant thionins–the structural perspective. Cell Mol Life Sci CMLS 2006; 63: 1370-1385.
  • 16. Fujimura M, Ideguchi M, Minami Y, Watanabe K, Tadera K. Amino acid sequence and antimicrobial activity of chitin-binding peptides, Pp-AMP 1 and Pp-AMP 2, from Japanese bamboo shoots (Phyllostachys pubescens). Biosci Biotechnol Biochem 2005; 69 (3): 642-645.
  • 17. Fujimura M, Ideguchi M, Minami Y, Watanabe K, Tadera K. Purification, characterization, and sequencing of novel antimicrobial peptides, Tu-AMP 1 and Tu-AMP 2, from bulbs of tulip (Tulipa gesneriana L.). Biosci Biotechnol Biochem 2004; 68 (3): 571-577.
  • 18. Terras FR, Eggermont K, Kovaleva V, et al. Small cysteine-rich antifungal proteins from radish: their role in host defense. The Plant Cell 1995; 7 (5): 573-588.
  • 19. Hegedus N, Marx F. Antifungial proteins: more than antimicrobials? Fungal Biol Rev 2013; 26: 132-145.
  • 20. Houlne G, Meyer B, Schantz R. Alteration of the expression of a plant defensin gene by exon shuffling in bell pepper (Capsicum annuum L.). Mol General Gen 1998; 259 (5): 504-510.
  • 21. Zhang Y, Lewis K. Fabatins: new antimicrobial plant peptides. FEMS Microbiol Lett 1997; 149 (1): 5964.
  • 22. Craik DJ. Discovery and applications of plant cyclotides. Toxicon 2010; 57: 1092-1102.
  • 23. Gould A, Ji Y, L Aboye T, Camarero AJ. Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr Pharma Design 2011; 17 (38): 4294-4307.
  • 24. Daly NL, Clark RJ, Plan MR, Craik DJ. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Biochem J 2006; 393 (3): 619-626.
  • 25. Derua R, Gustafson KR, Pannell LK. Analysis of the disulfide linkage pattern in circulin A and B, HIV inhibitory macrocyclic peptides. Biochem Biophysic Res Commun 1996; 228 (2): 632-638. 26. Segura A, Moreno M, Madueño F, Molina A, GarcíaOlmedo F. Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant-Microbe Interact 1999; 12 (1): 16-23.
  • 27. Berrocal-Lobo M, Segura A, Moreno M, et al. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 2002; 128 (3): 951-961.
  • 28. Daneshmand F, Zare-Zardini H, Ebrahimi L. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits. Natural Product Res 2013; 27 (24): 2292-2296.
  • 29. VanParijs J, Broekaert WF, Goldstein IJ, Peumans WJ. Hevein an antifungal protein from rubber-tree (Hevea braziliensis) latex. Planta 1991; 183:258-264.
  • 30. Broekaert WF, Marien W, Terras FR, et al. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochem 1992; 31 (17): 4308-4314.
  • 31. Yang X, Xiao Y, Pei Y and Zhen C. LJAFP, a novel nonspecific lipid transfer protein-like antimicrobial protein from motherwort (Leonurus japonicus) confers disease resistance against phytopathogenic fungi and bacterium in transgenic tobacco. Submitted (MAR-2005) to the EMBL/GenBank/DDBJ databases.
  • 32. Patel SU, Osborn R, Rees S, Thornton JM. Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry 1998 37:983–990.
  • 33. Cammue BP, De Bolle MF, Terras FR, et al. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L seeds. J Biol Chem 1992; 267:2228–2233.
  • 34. Gao GH, Liu W, Dai JX, et al. Solution structure of PAFP-S a new knottin-type antifungal peptide from the seeds of Phytolacca americana. Biochemistry 2001; 40:10973– 10978.
  • 35. Chouabe C, Eyraud V, Da Silva P et al. New mode of action for a knottin protein bioinsecticide: pea albümin 1 subunit b (PA1b) is the first peptidic inhibitör of V-ATPase. J Biol Chem 2011;286:36291–36296.
  • 36. Cândido Ede S, Pinto MF, Pelegrini PBet al. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. FASEB J 2011; 25:3290–3305.
  • 37. Yang X, Xiao Y, Wang X, Pei Y. Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco. Appl Environ Microbiol 2007; 73:939–946.
  • 38. Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES. Cellpenetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des 2012; 80:639–646.
  • 39. Greewood KP, Daly NL, Brown DL, Stow JL, Craik DJ. The cyclic cystine knot mini protein MCoTI-II is internalized into cells by macropinocytosis. Int J Biochem Cell Biol 2007; 39:2252–2264
  • 40. Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P. Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plants cell. Chembiochem 2011; 12:132–137.
  • 41. Hong M, Su Y. Structure and dynamics of cationic membrane peptides and proteins insights from solid-state NMR. Protein Sci 2011; 20: 641–655.
  • 42. Veldhoen S, Laufer SD, Restle T. Recent developments in peptide based nucleic acid delivery. Int J Mol Sci 2008; 9:1276–1320.
  • 43. Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. BBA-Biomembranes 1999; 1462 (1): 29-54.
  • 44. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003; 55 (1): 27-55.
  • 45. Gazit E, Boman A, Boman HG, Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochem 1995; 34 (36): 11479-11488.
  • 46. Thomma BP, Cammue BP, Thevissen K. Plant defensins. Planta 2002; 216:193–202.
  • 47. Koo JC, Chun HJ, Park HC et al. Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol Biol 2002; 50:441–452.
  • 48. Gao A, Hakimi SM, Mittanck CA et al. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 2000; 18:1307–1310.
  • 49. Clark RJ, Daly NL, Craik DJ. Structural plasticity of the cycliccystine-knot framework: implications for biological activity and drug design. Biochem J 2006; 394:85–93.
  • 50. Pelegrini PB, Quirino BF, Franco OL. Plantcyclotides:anunusual class of defense compounds. Peptides 2007; 28:1475–1481.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Derleme Bölümü
Authors

Dilşad Onbaşlı 0000-0002-0569-6989

Gökçen Yuvalı Çelik 0000-0002-3990-1346

Hikmet Katırcıoğlu 0000-0002-4866-6106

Publication Date June 22, 2020
Submission Date April 3, 2020
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

APA Onbaşlı, D., Yuvalı Çelik, G., & Katırcıoğlu, H. (2020). İLACA DİRENÇLİ MİKROORGANİZMALARA KARŞI YENİ BİR YAKLAŞIM: GELECEĞİN ANTİBİYOTİKLERİ, BİTKİSEL ANTİMİKROBİYAL PEPTİDLER. ERÜ Sağlık Bilimleri Fakültesi Dergisi, 7(1), 51-57.