Research Article
BibTex RIS Cite

Flexural Behavior of Reinforced Concrete Beams Subjected to Corrosion

Year 2018, Volume: 11 Issue: 1, 1 - 10, 17.05.2018
https://doi.org/10.18185/erzifbed.359173

Abstract

New methods and experimental results are needed to more accurately evaluate the seismic performance of reinforced concrete structures exposed to corrosion. Corrosion causes to decrease in the cross-sectional area of the corroded reinforcement bars in the concrete, which also causes significant problems such as loss of bond. Loss of adherence can lead to slippage in reinforcement bars which can cause additional lateral displacements. However, since there is not enough experimental data on full-scale corroded reinforced concrete members in the current field literature; the effect of corrosion continues to be taken only as a decrease in the diameter of reinforcement bar in building performance evaluations. In this study, it was aimed to provide data for the available literature for full scaled reinforced concrete beams that were subjected to flexural tests at different ratios of corrosion In this study, experimental load-displacement relations of full-scale reinforced concrete beams subjected to bending tests at different ratios are discussed in terms of parameters such as increased corrosion rate, reduction in reinforcement, primary cracks occurring during accelerated corrosion, damage to reinforcements and adherence losses caused by the reduction of radial frictional forces. Five reinforced concrete beams were corroded by using the accelerated corrosion method. The actual corrosion ratios in reinforced concrete beams were obtained by crushing the reinforced concrete beams and extracting the reinforcement bars after flexural tests. As a result of the experimental study, it was found that corrosion ratio at 3% increased the ductility of structural members but decreases the ultimate load-carrying and ductility as the corrosion rate was increased. The difference in the bending behavior of two different reinforced concrete beams with the same corrosion rate was determined by different corrosion rates in transverse reinforcement bars. Experimental test results showed that instead of accepting the same corrosion rate in reinforced concrete structures exposed to corrosion, corrosion mapping methods have to be developed to evaluate existing structures more accurately.

References

  • ASTM G:1-03, 2003. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens.
  • Bazant, Z.P. 1979. Physical model for steel corrosion in concrete sea structures—theory. Journal of the Structural Division, 105(6), 1137-1153.
  • Capozucca, R. Cerri, M.N. 2000. Identification of damage in RC beams subjected to corrosion. ACI Structural Journal, 97(6), 902–9.
  • Cavaco, E.S. Neves, L.A.C., Casas, J.R. 2017a. Reliability‐based approach to the robustness of corroded reinforced concrete structures. Structural Concrete, 18(2), 316–325.
  • DBYBHY-2007. Deprem Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara.
  • Dekoster, M. Buyle-Bodin, F. Maurel, O. Delmas, Y. 2003. Modelling of the flexural behaviour of RC beams subjected to localized and uniform corrosion. Engineering Structures, 25(10), 1333–41.
  • Du, Y.G. Clark, L.A. Chan, A.H.C. 2005. Residual capacity of corroded reinforcing bars. Magazine of Concrete Research, 57(3), 135–47.
  • Du, Y.G. Clark, L.A. Chan, A.H.C. 2007. Impact of reinforcement corrosion on ductile behavior of reinforced concrete beams. ACI Structural Journal, 104(3), 285–93.
  • El Maaddawy, T. Soudki, K. Topper, T. 2005a. Analytical model to predict nonlinear flexural behaviour of corroded reinforced concrete beams. ACI Structural Journal, 102(4), 550–9.
  • El Maaddawy, T. Soudki, K. Topper, T. 2005b. Long-term performance of corrosion damaged reinforced concrete beams. ACI Structural Journal, 102(5), 649–56.
  • Malumbela, G. Moyo, P. Alexander, M. 2009. Behaviour of RC beams corroded under sustained service loads. Construction and Building Materials, 23(11), 3346–51.
  • Palsson, R. Mirza, M.S. 2002. Mechanical response of corroded steel reinforcement of abandoned concrete bridge. ACI Structural Journal, 99(2), 157–62.
  • Saether, I., Sand B. 2012. FEM simulations of reinforced concrete beams attacked by corrosion. ACI Structural Journal, 39(2), 15–31.
  • Saifullah, M. 1994. Effect of reinforcement corrosion on bond strength in reinforced concrete PhD thesis. UK: The University of Birmingham 29(6), 1145-52.
  • Torres-Acosta, A.A., Navarro-Gutierrez, S., Terán-Guillén, J. 2007. Residual flexure capacity of corroded reinforced concrete beams. Engineering Structures, 29, 1145–52.
  • TS500-2000. Betonarme Yapıların Hesap ve Yapım Kuralları, Türk Standartları Enstitüsü, Ankara.
  • Vidal, T. Castel, A. François, R. 2004. Analyzing crack width to predict corrosion in reinforced concrete. Cement and Concrete Research, 34(1), 165–74.
  • Xiaoming, Y., Hongqiang, Z. 2012. Finite element investigation on load carrying capacity of corroded RC beam based on bond-slip. Jordan Journal of Civil Engineering, 6(1), 134–46.
  • Yalciner, H., Eren, O., Sensoy, S. 2012. An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level, Cement and Concrete Research, 42(5), 643-55.
  • Yalciner, H., Kumbasaroglu, A., Ertuc, İ., Turan, A.İ. 2018. Confinement effect of geo-grid and conventional shear reinforcement bars subjected to corrosion. Structures, 13, 139-152.
  • Zhu, W. François, R. 2014. Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam. Construction and Building Materials

Korozyon Etkisine Maruz Bırakılmış Betonarme Kirişlerin Eğilme Davranışı

Year 2018, Volume: 11 Issue: 1, 1 - 10, 17.05.2018
https://doi.org/10.18185/erzifbed.359173

Abstract

Korozyona maruz kalmış betonarme yapılarının deprem performanslarının daha doğru bir şekilde değerlendirilmesi için yeni yöntem ve deneysel sonuçlardan elde edilecek verilere ihtiyaç duyulmaktadır. Korozyon beton içerisinde paslanan betonarme donatısının kesit alanının azalmasına neden olurken beraberinde aderans kaybı gibi önemli sorunlara da neden olmaktadır. Aderans kaybı ise donatı sıyrılmasına sebebiyet vererek ek yanal deplasmanların oluşmasına neden olabilmektedir. Ancak mevcut alan yazında literatürde tam ölçekli paslandırılmış betonarme elemanları üzerine yeterli deneysel veriler olmadığından korozyonun etkisi yapı performansı değerlendirmelerinde yalnızca donatı çapındaki azalma olarak alınmaya devam etmektedir. Bu çalışmada tam ölçekli betonarme kirişleri farklı pas oranlarında eğilme deneylerine tabi tutularak mevcut alan yazına veri sağlanması amaçlanmıştır deneysel elde edilen yük-deplasman ilişkileri; artan korozyon oranı, donatı çapındaki azalma, hızlandırılmış korozyon yöntemi sırasında meydana gelen birincil çatlaklar, donatı üzerindeki nervürlerin hasar görmesi ve buna bağlı olarak radyal sürtünme kuvvetindeki azalımın neden olduğu aderans kayıpları gibi parametreler açısından tartışılmıştır. Beş adet betonarme kirişi hızlandırılmış korozyon yöntemi kullanılarak paslandırılmıştır. Betonarme kirişlerindeki gerçek korozyon oranları eğilme deneylerinden sonra betonarme kirişlerinin kırılarak ve içerlerinden betonarme donatılarının çıkartılması ile elde edilmiştir. Yapılan deneysel çalışma sonucunda korozyon oranının %3 değerlerinde yapı elemanlarında sünekliği arttığı ancak artan korozyon oranına bağlı olarak nihai yük taşıma ve süneklik değerlerinde azalmalara sebebiyet verdiği bulunmuştur. Aynı korozyon oranına sahip iki farklı betonarme kirişindeki eğilme davranışlarının farklılığı, sargı donatılarındaki farklı korozyon oranları ile tespit edilmiştir. Elde edilen deney sonuçları, korozyona maruz kalmış betonarme yapılarda aynı korozyon oranı kabulü yerine korozyon haritalandırma yöntemlerinin mevcut yapıların daha doğru değerlendirilmesi için geliştirilmesi gerektiğini ortaya koymuştur.

References

  • ASTM G:1-03, 2003. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens.
  • Bazant, Z.P. 1979. Physical model for steel corrosion in concrete sea structures—theory. Journal of the Structural Division, 105(6), 1137-1153.
  • Capozucca, R. Cerri, M.N. 2000. Identification of damage in RC beams subjected to corrosion. ACI Structural Journal, 97(6), 902–9.
  • Cavaco, E.S. Neves, L.A.C., Casas, J.R. 2017a. Reliability‐based approach to the robustness of corroded reinforced concrete structures. Structural Concrete, 18(2), 316–325.
  • DBYBHY-2007. Deprem Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara.
  • Dekoster, M. Buyle-Bodin, F. Maurel, O. Delmas, Y. 2003. Modelling of the flexural behaviour of RC beams subjected to localized and uniform corrosion. Engineering Structures, 25(10), 1333–41.
  • Du, Y.G. Clark, L.A. Chan, A.H.C. 2005. Residual capacity of corroded reinforcing bars. Magazine of Concrete Research, 57(3), 135–47.
  • Du, Y.G. Clark, L.A. Chan, A.H.C. 2007. Impact of reinforcement corrosion on ductile behavior of reinforced concrete beams. ACI Structural Journal, 104(3), 285–93.
  • El Maaddawy, T. Soudki, K. Topper, T. 2005a. Analytical model to predict nonlinear flexural behaviour of corroded reinforced concrete beams. ACI Structural Journal, 102(4), 550–9.
  • El Maaddawy, T. Soudki, K. Topper, T. 2005b. Long-term performance of corrosion damaged reinforced concrete beams. ACI Structural Journal, 102(5), 649–56.
  • Malumbela, G. Moyo, P. Alexander, M. 2009. Behaviour of RC beams corroded under sustained service loads. Construction and Building Materials, 23(11), 3346–51.
  • Palsson, R. Mirza, M.S. 2002. Mechanical response of corroded steel reinforcement of abandoned concrete bridge. ACI Structural Journal, 99(2), 157–62.
  • Saether, I., Sand B. 2012. FEM simulations of reinforced concrete beams attacked by corrosion. ACI Structural Journal, 39(2), 15–31.
  • Saifullah, M. 1994. Effect of reinforcement corrosion on bond strength in reinforced concrete PhD thesis. UK: The University of Birmingham 29(6), 1145-52.
  • Torres-Acosta, A.A., Navarro-Gutierrez, S., Terán-Guillén, J. 2007. Residual flexure capacity of corroded reinforced concrete beams. Engineering Structures, 29, 1145–52.
  • TS500-2000. Betonarme Yapıların Hesap ve Yapım Kuralları, Türk Standartları Enstitüsü, Ankara.
  • Vidal, T. Castel, A. François, R. 2004. Analyzing crack width to predict corrosion in reinforced concrete. Cement and Concrete Research, 34(1), 165–74.
  • Xiaoming, Y., Hongqiang, Z. 2012. Finite element investigation on load carrying capacity of corroded RC beam based on bond-slip. Jordan Journal of Civil Engineering, 6(1), 134–46.
  • Yalciner, H., Eren, O., Sensoy, S. 2012. An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level, Cement and Concrete Research, 42(5), 643-55.
  • Yalciner, H., Kumbasaroglu, A., Ertuc, İ., Turan, A.İ. 2018. Confinement effect of geo-grid and conventional shear reinforcement bars subjected to corrosion. Structures, 13, 139-152.
  • Zhu, W. François, R. 2014. Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam. Construction and Building Materials
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Hakan Yalcıner

Atila Kumbasaroglu

İbrahim Ertuç

Publication Date May 17, 2018
Published in Issue Year 2018 Volume: 11 Issue: 1

Cite

APA Yalcıner, H., Kumbasaroglu, A., & Ertuç, İ. (2018). Korozyon Etkisine Maruz Bırakılmış Betonarme Kirişlerin Eğilme Davranışı. Erzincan University Journal of Science and Technology, 11(1), 1-10. https://doi.org/10.18185/erzifbed.359173