Research Article
BibTex RIS Cite

Lower Bound Eigenvalue Problems of the Compact Riemannian Spin-Submanifold Dirac Operator

Year 2020, Volume: 13 Issue: ÖZEL SAYI I, 56 - 62, 28.02.2020
https://doi.org/10.18185/erzifbed.605220

Abstract

In
this paper, we construct two modified spinorial Levi
Civita connection based on the EnergyMomentum tensor and its trace to bring an optimal
lower bound to the eigenvalues of the compact Riemannian Spin
submanifold Dirac operator in terms of the the
Energy
Momentum tensor and its trace.  Then, we extend these estimates in terms of
the Yamabe number and the area of the submanifold under the conformal change of
the metric.

References

  • Friedrich T. (2000). “Dirac operators in Riemannian geometry”, American Mathematical Society, 25.
  • Friedrich T., Kim E.C. (2001). “Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors”, J. Geom. Phys., 37 (1-2), 1-14.
  • Hijazi O. (1986). “A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors”, Comm.Math. Phys., 104, 151–162.
  • Hijazi O. (1995). “Lower bounds for the eigenvalues of the Dirac operator”, J. Geom. Phys. 16, 27-38.
  • Hijazi O. (1991). “Première valeur propre de l’opérateur de Dirac et nombre de Yamabe”, Comptes rendus de l’Académie, des sciences. Série 1, Mathématique, 313 (12), 865–868.
  • Hijazi O., Zhang X. (2001). “ Lower bounds for the eigenvalues of the Dirac operator: part I. The hypersurface Dirac operator”, Ann. Global Anal. Geom., 19 (4), 355–376.
  • Hijazi O., Zhang X. (2001). “ Lower bounds for the eigenvalues of the Dirac operator: part II. The Submanifold Dirac operator”, Ann. Global Anal. Geom. 20 (2), 163–181.
  • Hijazi O., Montiel S., Zhang X. (2001). “Eigenvalues of the Dirac Operator on Manifolds with Boundary”, Comm. Math. Phys., 221 (2), 255–265.
  • Lawson H., Michelsohn M. (1989). “Spin Geometry”, Princeton university press.
  • Nakad R., Roth J. (2013). “The Spin ^c Dirac operator on hypersurfaces and applications”, Differential Geom. Appl. 31 (1), 93-103 .
  • Lichnerowicz A. (1963). “ “Spineurs harmoniques”, C.R. Acad. Sci. Paris Ser. AB, 257, 1963.
  • Naber G.L. (1997). “Topology, geometry, and gauge fields”, Springer, New York.
  • Zhang X. (1998). “ Lower bounds for eigenvalues hypersurface Dirac operators, Math. Res. Lett., 5 (2), 199–210. Zhang X. (1998) “ Angular momentum and positive mass theorem”, Comm. Math. Phys., 206 (1), 137–155.

Kompakt Riemannian Spin-Alt manifold Dirac Operatörünün Alt Sınır Özdeğer Problemleri

Year 2020, Volume: 13 Issue: ÖZEL SAYI I, 56 - 62, 28.02.2020
https://doi.org/10.18185/erzifbed.605220

Abstract

Bu makalede, Kompakt Riemannian Spin altmanifold Dirac operatörünün
özdeğerlerine Energy
Momentum tensörü ve onun izine bağlı olarak optimal bir alt sınır getirmek
için spinorial Levi
Civita konneksiyonunu EnergyMomentum tensörü ve onun izine bağlı olarak deforme ettik.  Daha sonra bu tahminleri konformal değişim
metriği altında Yamabe sayısı ve altmanifoldun alanına bağlı olarak
genişlettik.

References

  • Friedrich T. (2000). “Dirac operators in Riemannian geometry”, American Mathematical Society, 25.
  • Friedrich T., Kim E.C. (2001). “Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors”, J. Geom. Phys., 37 (1-2), 1-14.
  • Hijazi O. (1986). “A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors”, Comm.Math. Phys., 104, 151–162.
  • Hijazi O. (1995). “Lower bounds for the eigenvalues of the Dirac operator”, J. Geom. Phys. 16, 27-38.
  • Hijazi O. (1991). “Première valeur propre de l’opérateur de Dirac et nombre de Yamabe”, Comptes rendus de l’Académie, des sciences. Série 1, Mathématique, 313 (12), 865–868.
  • Hijazi O., Zhang X. (2001). “ Lower bounds for the eigenvalues of the Dirac operator: part I. The hypersurface Dirac operator”, Ann. Global Anal. Geom., 19 (4), 355–376.
  • Hijazi O., Zhang X. (2001). “ Lower bounds for the eigenvalues of the Dirac operator: part II. The Submanifold Dirac operator”, Ann. Global Anal. Geom. 20 (2), 163–181.
  • Hijazi O., Montiel S., Zhang X. (2001). “Eigenvalues of the Dirac Operator on Manifolds with Boundary”, Comm. Math. Phys., 221 (2), 255–265.
  • Lawson H., Michelsohn M. (1989). “Spin Geometry”, Princeton university press.
  • Nakad R., Roth J. (2013). “The Spin ^c Dirac operator on hypersurfaces and applications”, Differential Geom. Appl. 31 (1), 93-103 .
  • Lichnerowicz A. (1963). “ “Spineurs harmoniques”, C.R. Acad. Sci. Paris Ser. AB, 257, 1963.
  • Naber G.L. (1997). “Topology, geometry, and gauge fields”, Springer, New York.
  • Zhang X. (1998). “ Lower bounds for eigenvalues hypersurface Dirac operators, Math. Res. Lett., 5 (2), 199–210. Zhang X. (1998) “ Angular momentum and positive mass theorem”, Comm. Math. Phys., 206 (1), 137–155.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Serhan Eker 0000-0003-1039-0551

Publication Date February 28, 2020
Published in Issue Year 2020 Volume: 13 Issue: ÖZEL SAYI I

Cite

APA Eker, S. (2020). Lower Bound Eigenvalue Problems of the Compact Riemannian Spin-Submanifold Dirac Operator. Erzincan University Journal of Science and Technology, 13(ÖZEL SAYI I), 56-62. https://doi.org/10.18185/erzifbed.605220