Year 2020,
Volume: 13 Issue: ÖZEL SAYI I, 162 - 174, 28.02.2020
Osman Alagoz
,
Birol Gündüz
,
Sezgin Akbulut
References
- Abbas, M. and Nazir, T. 2014. “A new faster iteration process applied to constrained minimization and feasibility problems”, Mathematificki Vesnik, 66(2), 223-234.
- Agarwal, R. P., O'Regan, D. and Sahu, D.R. 2007. “Iteraitve construction of fixed points of nearly asymptotically nonexpansive mappings”, J. Nonlinear Convex Anal. 8 (1), 61-79.
- Berinde, V. 2001. “Picard iteration converges faster than Mann iteration for a class of quasicontractive operators”, Fixed Point Theory and Applications, 2, 97-105.
- Goebel, K. and Kirk, W.A. (1990). “Topic in Metric Fixed Point Theory”, Cambridge University Press.
- Ishikawa, S., 1974. “Fixed points by a new iteration method”, Proc. Am. Math. Soc. 44, 147-150.
- Karaca, N. and Yildirim, I. 2015. “Approximating fixed points of nonexpansive mappings by a faster iteration process”, J. Adv. Math. Stud. Vol. 8(2), 257-264.
- Khan, S. H. 2013. “A Picard-Man hybrid iterative process”, Fixed Point Theory and appl., doi:10.1186/1687-1812-2013-69.
- Mann, W. R. 1953. “Mean value methods in iteration”, Proc. Am. Math. Soc. 4, 506-510.
- Noor, M. A. 2000. “New approximation schemes for general variational inequalities”, Journal of Mathematical Analysis and Applicaitons, 251(1), 217-229.
- Opial, Z. 1967. “Weak convergence of the sequence of successive approximations for nonexpansive mappings”, Bull. Am. Math. Soc. 73, 595-597.
- Picard, E., 1890. “Memoire sur la theorie des equation aux derivees partielles la methode des approximations successives”, J. Math. Pures Appl. 6, 145-210.
- Phuengrattana, W. 2011. “Approximating fixed points of Suzuki-generalized nonexpansive mappings”, Nonlinear Anal. Hybrid Syst. 5(3), 583-590.
- Schu, J. 1991. “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings”, Bull. Aust. Math. Soc. 43(1), 153-159.
- Senter, H. F. and Dotson, W. G. 1974. “Approximating fixed points of nonexpansive mappings”, Proc. Am. Math. Soc., 44(2), 375-380.
- Sintunavarat, W. and Pitea, A. “On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis”, J. Nonlinear Sci. Appl., 9, 2553-2562.
- Suzuki, T. 2008. “Fixed point theorems and convergence theorems for some generalized nonexpansive mappings”, J. Math. Anal. Appl., 340(2), 1088-1095.
- Thakur et al., 2014. “New iteraiton schme for numerical reckoning fixed points of nonexpansive mappings”, Journal of inequalities and applicaitons, 238,1-15.
- Thakur et al., 2016. “E new iteraiton scheme for approximating fixed points of nonexpansive mappings”, Filomat, 30(10), 2711-2720.
- Zamfirescu, T. 1972. “Fixed point theorems in metric spaces”, Archive 23 (1972), 292-298.1
Convergence Theorems with a Faster Iteration Process for Suzuki’s Generalized Non-expansive Mapping with Numerical Examples
Year 2020,
Volume: 13 Issue: ÖZEL SAYI I, 162 - 174, 28.02.2020
Osman Alagoz
,
Birol Gündüz
,
Sezgin Akbulut
Abstract
In this paper firstly, we compared rates of convergences of some
iteration processes which converge faster than Picard, Mann, Ishikawa and
S-iteration processes. Then, we proved some strong and weak convergence
theorems for the fastest iteration process for Suzuki’s generalized
non-expansive mapping in Banach spaces. We also supported our theoretical
findings via numerical examples.
References
- Abbas, M. and Nazir, T. 2014. “A new faster iteration process applied to constrained minimization and feasibility problems”, Mathematificki Vesnik, 66(2), 223-234.
- Agarwal, R. P., O'Regan, D. and Sahu, D.R. 2007. “Iteraitve construction of fixed points of nearly asymptotically nonexpansive mappings”, J. Nonlinear Convex Anal. 8 (1), 61-79.
- Berinde, V. 2001. “Picard iteration converges faster than Mann iteration for a class of quasicontractive operators”, Fixed Point Theory and Applications, 2, 97-105.
- Goebel, K. and Kirk, W.A. (1990). “Topic in Metric Fixed Point Theory”, Cambridge University Press.
- Ishikawa, S., 1974. “Fixed points by a new iteration method”, Proc. Am. Math. Soc. 44, 147-150.
- Karaca, N. and Yildirim, I. 2015. “Approximating fixed points of nonexpansive mappings by a faster iteration process”, J. Adv. Math. Stud. Vol. 8(2), 257-264.
- Khan, S. H. 2013. “A Picard-Man hybrid iterative process”, Fixed Point Theory and appl., doi:10.1186/1687-1812-2013-69.
- Mann, W. R. 1953. “Mean value methods in iteration”, Proc. Am. Math. Soc. 4, 506-510.
- Noor, M. A. 2000. “New approximation schemes for general variational inequalities”, Journal of Mathematical Analysis and Applicaitons, 251(1), 217-229.
- Opial, Z. 1967. “Weak convergence of the sequence of successive approximations for nonexpansive mappings”, Bull. Am. Math. Soc. 73, 595-597.
- Picard, E., 1890. “Memoire sur la theorie des equation aux derivees partielles la methode des approximations successives”, J. Math. Pures Appl. 6, 145-210.
- Phuengrattana, W. 2011. “Approximating fixed points of Suzuki-generalized nonexpansive mappings”, Nonlinear Anal. Hybrid Syst. 5(3), 583-590.
- Schu, J. 1991. “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings”, Bull. Aust. Math. Soc. 43(1), 153-159.
- Senter, H. F. and Dotson, W. G. 1974. “Approximating fixed points of nonexpansive mappings”, Proc. Am. Math. Soc., 44(2), 375-380.
- Sintunavarat, W. and Pitea, A. “On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis”, J. Nonlinear Sci. Appl., 9, 2553-2562.
- Suzuki, T. 2008. “Fixed point theorems and convergence theorems for some generalized nonexpansive mappings”, J. Math. Anal. Appl., 340(2), 1088-1095.
- Thakur et al., 2014. “New iteraiton schme for numerical reckoning fixed points of nonexpansive mappings”, Journal of inequalities and applicaitons, 238,1-15.
- Thakur et al., 2016. “E new iteraiton scheme for approximating fixed points of nonexpansive mappings”, Filomat, 30(10), 2711-2720.
- Zamfirescu, T. 1972. “Fixed point theorems in metric spaces”, Archive 23 (1972), 292-298.1