Research Article
BibTex RIS Cite

Application of Multinomial-Dirichlet Distribution in Contingency Tables: Comparison of Internet Usage Frequency of Two City Students

Year 2020, Volume: 13 Issue: 1, 190 - 200, 20.03.2020
https://doi.org/10.18185/erzifbed.620533

Abstract

In
most medical and social studies are encountered with categorical variables. The
relationship between two or more categorical variables that summarized by
frequency and percentage is determined by tabulating. Commonly, Chi-Square
independence tests are used to examine the interdependence and interchange
between subcategories. However, the Chi-Square test gives a general result, the
subcategory(s) that make the difference are revealed by examining the
proportions differences. As the number of subcategories increases, this number
of pairwise comparisons is equal to
 and since there is 1-α confidence
in each comparison, the cumulative type I error increases as the number of
pairwise comparisons increases. The aim of this study is to using
Multinomial-Dirichlet distribution to compare the proportion differences with
fixed type I error, regardless of the number of subcategories. In application, simulation
data was obtained for the small sample (n
25), and a part of Project data that supported
by Giresun University Scientific Research Projects (SOS-BAP-A-200515-43) was
used. As a result; Multinomial-Dirichlet distribution approach has been found
to give a narrower confidence interval, especially for small sample size.

References

  • Agresti. A. (1996). “An Introduction to Categorical Data Analysis 1st ed.”. John Wiley&Sons. 19-21.
  • Aickin. M. Gensler. H. "Adjusting for Multiple Testing when Reporting Research Results: The Bonferroni vs Holm Methods". Am J Public Health. 1996. 86(5). 726–728.
  • Arıcıgil Çilan. Ç. (2013). “Sosyal Bilimlerde Kategorik Verilerle İlişki Analizi”. Pegem Akademi. Ankara. 33-79.
  • Bartlett. M.S. 1935. “Contingency Table Interactions”. Journal of the Royal Statistical Society. 2. 248-252.
  • Chen. Y. 2016. “A Bayesian Dirichlet-Multinomial Test for Cross-Group Differences”. Master of Science. Department of Statistical Science in the Graduate School of Duke University. Durham. NC. 3-12.
  • Cochran. W. G. 1952. “The χ2 Test of Goodness of Fit”. Annals of Mathematical Statistics. 23. 315–345.
  • Cochran. W.G. 1954.. “Some Methods for Strengthening the Common Chi-Square Tests”. Biometrics. 10. 417-451.
  • Conover. W.J. (1999). “Practical Noneparametric Statistics 3rd ed.”. John Wiley&Sons. 84-102.
  • Fisher. R.A. 1922. “On the Interpretation of Chi-Square from Contingency Tables. and the Calculation of P”. Journal of the Royal Statistical Society. 85. 87-94.
  • Good. I. (1965). “The Estimation of Probabilities: An Essay on Modern Bayesian Methods”. MIT Press. 1st edition.
  • Imperial College London. (2019).wwwf.imperial.ac.uk › Handouts › Notes › Chap6. Son Erişim Tarihi: 04.07.2019
  • La Rosa. P.. Brooks. J.. Deych. E.. Boone. E.. Edwards. D.. Wang. Q.. Sodergren. E.. Weinstock. G.. and Shannon. W. 2012. “Hypothesis Testing and Power Calculations for Taxonomic-Based Human Microbiome Data”. PLoS one. 7. e52078.
  • Lindley. D. 1964. “The Bayesian Analysis of Contingency Tables”. The Annals of Mathematical Statistics. 35.1622-1643.
  • Neyman. J. 1949. “Contributions to the Theory of the Chi-Square Test”. Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability. University of California Press. Berkeley. 239-273.
  • Özdamar. K. (2015). “SPSS ile Biyoistatistik”. Nisan Kitapevi Yayınları. Ankara. 345-355.
  • Pearson. K. 1900. “On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can Be Reasonably Supposed to Have Arisen from Random Sampling”. Philosophical Magazine. (5)50. 157-175.
  • Powers. D.A.. Xie. Y. (2000). “Statistical Methods for Categorical Data Analysis”. Academic Press. 1-3.
  • Pullen. G.A.. Kumaran. M. 2010. “Application of Multinomial-Dirichlet Conjugate in MCMC Estimation: A Breast Cancer Study”. International Journal of Math. Analysis. 4(41). 2043-2049.
  • Sangeetha. U.. Subbiah. M.. Srinivasan. M.R. 2012. “Estimation of Confidence Intervals for Multinomial Proportion of Sparse Contingency Tables Using Bayesian Methods”. International Journal of Scientific and Research Publication. 3(4). 1-7.
  • Tuyl. F.. Gerlach. R.. Mengersen. K. 2009. “Posterior Predictive Arguments in Favor of the Bayes-Laplace Prior as the Consensus Prior for Binomial and Multinomial Parameters”. Bayesian Analysis. 2009. 4. 151 – 158.

Çapraz Tablolarda Multinomial-Dirichlet Dağılımının Uygulanması: İki Şehir (Ukrayna/Harkiv–Türkiye/Giresun) Öğrencilerinin İnternet Kullanım Sıklığının Karşılaştırılması

Year 2020, Volume: 13 Issue: 1, 190 - 200, 20.03.2020
https://doi.org/10.18185/erzifbed.620533

Abstract

Medikal ve sosyal çalışmaların bir çoğunda
nitelik ifade eden değişkenlerle karşılaşılmaktadır. Frekans ve yüzde ile
özetlenen iki veya daha fazla nitel değişken arasındaki bağımlılık ilişkisi,
tablolaştırılarak incelenmektedir. Yaygın olarak Ki-Kare bağımsızlık
testlerinden faydalanılarak alt kategorileri arasındaki bağımlılık ve birlikte değişimi
incelenmektedir. Ancak Ki-Kare testi genel bir sonuç vermekte, farklılığı
yaratan alt kategori(ler) oran farklarının incelenmesi ile ortaya
konulmaktadır. Alt kategori sayısı arttıkça bu karşılaştırma sayısı
 kombinasyonu kadar
olmakta ve her bir karşılaştırmada 1-α kadar güven öngörüldüğünden
karşılaştırma sayısı arttıkça kümülatif olarak I. tip hata da artmaktadır. Bu
çalışmanın amacı, Multinomial-Dirichlet dağılımından yararlanarak, alt kategori
sayısına bakılmaksızın sabit I. tip hata ile oran farklarının karşılaştırmasını
yapmaktır.  Uygulamada, küçük örnek (n
25) için simülasyon verisinden ve Giresun
Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenen
SOS-BAP-A-200515-43 verilerinin bir kısmından yararlanılmıştır. Çalışma
neticisinde; Multinomial-Dirichlet dağılımı yaklaşımının özellikle küçük örnek
hacmi için daha dar güven aralığına sahip olduğu saptanmıştır.

References

  • Agresti. A. (1996). “An Introduction to Categorical Data Analysis 1st ed.”. John Wiley&Sons. 19-21.
  • Aickin. M. Gensler. H. "Adjusting for Multiple Testing when Reporting Research Results: The Bonferroni vs Holm Methods". Am J Public Health. 1996. 86(5). 726–728.
  • Arıcıgil Çilan. Ç. (2013). “Sosyal Bilimlerde Kategorik Verilerle İlişki Analizi”. Pegem Akademi. Ankara. 33-79.
  • Bartlett. M.S. 1935. “Contingency Table Interactions”. Journal of the Royal Statistical Society. 2. 248-252.
  • Chen. Y. 2016. “A Bayesian Dirichlet-Multinomial Test for Cross-Group Differences”. Master of Science. Department of Statistical Science in the Graduate School of Duke University. Durham. NC. 3-12.
  • Cochran. W. G. 1952. “The χ2 Test of Goodness of Fit”. Annals of Mathematical Statistics. 23. 315–345.
  • Cochran. W.G. 1954.. “Some Methods for Strengthening the Common Chi-Square Tests”. Biometrics. 10. 417-451.
  • Conover. W.J. (1999). “Practical Noneparametric Statistics 3rd ed.”. John Wiley&Sons. 84-102.
  • Fisher. R.A. 1922. “On the Interpretation of Chi-Square from Contingency Tables. and the Calculation of P”. Journal of the Royal Statistical Society. 85. 87-94.
  • Good. I. (1965). “The Estimation of Probabilities: An Essay on Modern Bayesian Methods”. MIT Press. 1st edition.
  • Imperial College London. (2019).wwwf.imperial.ac.uk › Handouts › Notes › Chap6. Son Erişim Tarihi: 04.07.2019
  • La Rosa. P.. Brooks. J.. Deych. E.. Boone. E.. Edwards. D.. Wang. Q.. Sodergren. E.. Weinstock. G.. and Shannon. W. 2012. “Hypothesis Testing and Power Calculations for Taxonomic-Based Human Microbiome Data”. PLoS one. 7. e52078.
  • Lindley. D. 1964. “The Bayesian Analysis of Contingency Tables”. The Annals of Mathematical Statistics. 35.1622-1643.
  • Neyman. J. 1949. “Contributions to the Theory of the Chi-Square Test”. Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability. University of California Press. Berkeley. 239-273.
  • Özdamar. K. (2015). “SPSS ile Biyoistatistik”. Nisan Kitapevi Yayınları. Ankara. 345-355.
  • Pearson. K. 1900. “On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can Be Reasonably Supposed to Have Arisen from Random Sampling”. Philosophical Magazine. (5)50. 157-175.
  • Powers. D.A.. Xie. Y. (2000). “Statistical Methods for Categorical Data Analysis”. Academic Press. 1-3.
  • Pullen. G.A.. Kumaran. M. 2010. “Application of Multinomial-Dirichlet Conjugate in MCMC Estimation: A Breast Cancer Study”. International Journal of Math. Analysis. 4(41). 2043-2049.
  • Sangeetha. U.. Subbiah. M.. Srinivasan. M.R. 2012. “Estimation of Confidence Intervals for Multinomial Proportion of Sparse Contingency Tables Using Bayesian Methods”. International Journal of Scientific and Research Publication. 3(4). 1-7.
  • Tuyl. F.. Gerlach. R.. Mengersen. K. 2009. “Posterior Predictive Arguments in Favor of the Bayes-Laplace Prior as the Consensus Prior for Binomial and Multinomial Parameters”. Bayesian Analysis. 2009. 4. 151 – 158.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Esin Avcı 0000-0002-9173-0142

Publication Date March 20, 2020
Published in Issue Year 2020 Volume: 13 Issue: 1

Cite

APA Avcı, E. (2020). Çapraz Tablolarda Multinomial-Dirichlet Dağılımının Uygulanması: İki Şehir (Ukrayna/Harkiv–Türkiye/Giresun) Öğrencilerinin İnternet Kullanım Sıklığının Karşılaştırılması. Erzincan University Journal of Science and Technology, 13(1), 190-200. https://doi.org/10.18185/erzifbed.620533