Year 2021,
Volume: 14 Issue: 3, 1039 - 1054, 18.12.2021
Yeşim Dağlıoğlu
,
Betül Öztürk
References
- Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces, 28(4), 313-318.
- Alam, M. N., Roy, N., Mandal, D., Begum, N. A. (2013). Green chemistry for nanochemistry: exploring medicinal plants for the biogenic synthesis of metal NPs with fine-tuned properties. Rsc Advances, 3(30), 11935-11956.
- Annamalai, A., Christina, V. L. P., Sudha, D., Kalpana, M., Lakshmi, P. T. V. (2013). Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids and Surfaces B: Biointerfaces, 108, 60-65.
- Bindhani, B. K., Panigrahi, A. K. (2015). Biosynthesis and characterization of silver nanoparticles (SNPs) by using leaf extracts of Ocimum Sanctum L (Tulsi) and study of its antibacterial activities. J. Nanomed. Nanotechnol, 1, S6.
- Brand-Williams, W., Cuvelier, M. E., Berset, C. L. W. T. 1995. Use of a free radical method to evaluate antioxidant activity. LWT—Food Science and Technology,28(1), 25–30.
- Dağlıoğlu, Y., Öztürk, B. Y. (2019). A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp.(Scenedesmaceae): different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 30(3), 611-621.
- Deng, J., Cheng, W., & Yang, G. (2011). A novel antioxidant activity index (AAU) for natural products using the DPPH assay. Food Chemistry, 125(4), 1430-1435.
- Dhar, P., Tayade, A. B., Saurav, S. K., Chaurasia, O. P., Srivastava, R. B., & Singh, S. B. (2012). Antioxidant capacities and phytochemical composition of Hippophae rhamnoides L. leaves methanol and aqueous extracts from trans-Himalaya. Journal of Medicinal Plants Research, 6(47), 5780-5788.
- Duh, P. D., Tu, Y. Y., & Yen, G. C. (1999). Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). LWT-Food Science and Technology, 32(5), 269-277.
- Francis, B. 2008. Between Medicine, Magic, and Religion: Wonder Drugs in German Medico Pharmaceutical Treatises of the thirteenth to Sixteenth Centuries. Speculum, 83(1), 1-57.
- Huang, D., Ou, B., Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry, 53(6), 1841-1856.
- Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650.
- Jana, S., Pal, T. (2007). Synthesis, characterization and catalytic application of silver nanoshell coated functionalized polystyrene beads. Journal of nanoscience and nanotechnology, 7(6), 2151-2156.
- Jayarambabu, N., Akshaykranth, A., Rao, T. V., Rao, K. V., Kumar, R. R. (2020). Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Materials Letters, 259, 126813.
- Jayathilakan, K., Sharma, G. K., Radhakrishna, K., & Bawa, A. S. (2007). Antioxidant potential of synthetic and natural antioxidants and its effect on warmed-over-flavour in different species of meat. Food Chemistry, 105(3), 908-916.
- Jodallah, N. B. E. (2013). Antioxidant and antimicrobial activity of Mandragora autumnalis Bertol extracts (Doctoral dissertation).
- Kanipandian, N., Kannan, S., Ramesh, R., Subramanian, P., Thirumurugan, R. (2014). Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Materials Research Bulletin, 49, 494-502.
- Khalil MMH, Ismail EH, El-Magdoub F. Biosynthesis of Au nanoparticles using olive leaf extract. Arab.J. Chem. 2010.
- Kharat, S. N., and Mendhulkar, V. D. (2016). Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater. Sci. Eng. C 62, 719–724.
- Mahmoodi, N. O., Jalalifard, Z., Fathanbari, G. P. (2020). Green synthesis of bis‐coumarin derivatives using Fe (SD) 3 as a catalyst and investigation of their biological activities. Journal of the Chinese Chemical Society, 67(1), 172-182.
- Mehmood, A., Murtaza, G., Bhatti, T. M., Kausar, R. (2014). Enviro-friendly synthesis of silver nanoparticles using Berberis lycium leaf extract and their antibacterial efficacy. Acta Metallurgica Sinica (English Letters), 27(1), 75-80.
- Mohanta, Y. K., Panda, S. K., Jayabalan, R., Sharma, N., Bastia, A. K., Mohanta, T. K. (2017). Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Frontiers in molecular biosciences, 4, 14.
- Muthukrishnan, S., Bhakya, S., Kumar, T. S., & Rao, M. V. (2015). Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii–An endemic species. Industrial crops and products, 63, 119-124.
- Nakkala, J. R., Mata, R., Gupta, A. K., Sadras, S. R. (2014). Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. European journal of medicinal chemistry, 85, 784-794.
- Norshazila, S., Syed Zahir, I., Mustapha Suleiman, K., Aisyah, M. R., & Kamarul Rahim, K. (2010). Antioxidant levels and activities of selected seeds of malaysian tropical fruits. Malaysian Journal of Nutrition, 16(1).
- Öztürk, B. Y., Gürsu, B. Y., & Dağ, İ. (2020). Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89, 208-219.
- Öztürk, B. Y., Öztürk, D. (2019). Single Cell Level Microalgal green synthesis of silver nanoparticles: Confocal Microscopy and Digital Image Analysis. Eurasian Journal of Biological and Chemical Sciences, 2(2), 56-60.
- Öztürk, B. Y., Öztürk, D. (2020). Tilia rubra DC. ekstraktı kullanılarak gümüş nanopartikülün hücre dışı biyosentezi ve antifungal aktivitesi. Biyolojik Çeşitlilik ve Koruma, 13(3), 244-251.
- Patra, J. K., and Baek, K. H. (2016). Biosynthesis of silver nanoparticles using aqueous extract of silky hairs of corn and investigation of its antibacterial and anticandidal synergistic activity and antioxidant potential. IET Nanobiotechnol. 10, 326–333.
- Priya, R. S., Geetha, D., and Ramesh, P. S. (2016). Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs – A comparative study. Ecotoxicol. Environ. Saf. 134, 308–318.
- Rai, M. K., Deshmukh, S. D., Ingle, A. P., Gade, A. K. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. Journal of applied microbiology, 112(5), 841-852.
- Rasheed, T., Bilal, M., Iqbal, H. M., Li, C. (2017). Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids and Surfaces B: Biointerfaces, 158, 408-415.
- Rónavári, A., Kovács, D., Igaz, N., Vágvölgyi, C., Boros, I. M., Kónya, Z., Pfeiffer, I. ve Kiricsi, M. ( 2017). Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study, International journal of nanomedicine, 12, 871.
- Sands, D. E. (1993). Introduction to crystallography. Courier Corporation.
- Saratale, G. D., Saratale, R. G., Benelli, G., Kumar, G., Pugazhendhi, A., Kim, D. S., Shin, H. S. (2017). Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against food borne bacteria. Journal of Cluster Science, 28(3), 1709-1727.
- Scherer, R., & Godoy, H. T. (2009). Antioxidant activity index (AAI) by the 2, 2-diphenyl-1-picrylhydrazyl method. Food chemistry, 112(3), 654-658.
- Sellappan, S., Akoh, C. C., & Krewer, G. (2002). Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. Journal of agricultural and food chemistry, 50(8), 2432-2438.
- Thatoi, P., Kerry, R. G., Gouda, S., Das, G., Pramanik, K., Thatoi, H., Patra, J. K. (2016). Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. Journal of Photochemistry and Photobiology B: Biology, 163, 311-318.
- Vivek, R., Thangam, R., Muthuchelian, K., Gunasekaran, P., Kaveri, K., Kannan, S. (2012). Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochemistry, 47(12), 2405-2410.
- Wang, X. P., Yu, Y., Hu, X. F., & Gao, L. (2000). Hydrophilicity of TiO2 films prepared by liquid phase deposition. Thin Solid Films, 371(1-2), 148-152.
- Yousaf, H., Mehmood, A., Ahmad, K. S., & Raffi, M. (2020). Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Materials Science and Engineering: C, 112, 110901.
- Zin, Z. M., Hamid, A. A., Osman, A., & Saari, N. (2006). Antioxidative activities of chromatographic fractions obtained from root, fruit and leaf of Mengkudu (Morinda citrifolia L.). Food Chemistry, 94(2), 169-178.
Green Synthesis of Silver Nanoparticles Using Mandragora autumnalis; Its Characterization, Antioxidant and Antimicrobial Activities
Year 2021,
Volume: 14 Issue: 3, 1039 - 1054, 18.12.2021
Yeşim Dağlıoğlu
,
Betül Öztürk
Abstract
The green synthesis approach has benefits over traditional methods in silver nanoparticle synthesis that involve chemical agents interrelated environmental toxicity. For this reason, this approach has been preferred for the biosynthesis of silver nanoparticles (AgNPs). In addition, nanoparticles produced through plants are much more stable, large in size and shape range and can be biosynthesized in high amounts. Silver nanoparticles were synthesized from silver compound (AgNO3) using bioactive compounds of Mandragora autumnalis as capping and reducing agents. Synthesis nanoparticles (Ma-AgNPs) were characterized by SEM, TEM, X-ray diffraction and UV-vis absorption spectroscopy analyzes. X-ray diffraction analysis indicated that the nanoparticles had a crystalline structure. X-ray diffraction analysis demonstrated that the nanoparticles had a crystalline structure. In SEM and TEM images, the spherical shaped and average size of Ma-AgNPs is 20-30 nm. It has been noted that Ma-AgNPs show high antioxidant activity by using DPPH with Ascorbic acid as a standard. It showed a zone of inhibition against Gram positive (Bacillus subtilis, Staphylococcus aureus) and Gram negative (Escherichia coli and Pseudomonas aeruginosa) bacteria.
References
- Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces, 28(4), 313-318.
- Alam, M. N., Roy, N., Mandal, D., Begum, N. A. (2013). Green chemistry for nanochemistry: exploring medicinal plants for the biogenic synthesis of metal NPs with fine-tuned properties. Rsc Advances, 3(30), 11935-11956.
- Annamalai, A., Christina, V. L. P., Sudha, D., Kalpana, M., Lakshmi, P. T. V. (2013). Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids and Surfaces B: Biointerfaces, 108, 60-65.
- Bindhani, B. K., Panigrahi, A. K. (2015). Biosynthesis and characterization of silver nanoparticles (SNPs) by using leaf extracts of Ocimum Sanctum L (Tulsi) and study of its antibacterial activities. J. Nanomed. Nanotechnol, 1, S6.
- Brand-Williams, W., Cuvelier, M. E., Berset, C. L. W. T. 1995. Use of a free radical method to evaluate antioxidant activity. LWT—Food Science and Technology,28(1), 25–30.
- Dağlıoğlu, Y., Öztürk, B. Y. (2019). A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp.(Scenedesmaceae): different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 30(3), 611-621.
- Deng, J., Cheng, W., & Yang, G. (2011). A novel antioxidant activity index (AAU) for natural products using the DPPH assay. Food Chemistry, 125(4), 1430-1435.
- Dhar, P., Tayade, A. B., Saurav, S. K., Chaurasia, O. P., Srivastava, R. B., & Singh, S. B. (2012). Antioxidant capacities and phytochemical composition of Hippophae rhamnoides L. leaves methanol and aqueous extracts from trans-Himalaya. Journal of Medicinal Plants Research, 6(47), 5780-5788.
- Duh, P. D., Tu, Y. Y., & Yen, G. C. (1999). Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). LWT-Food Science and Technology, 32(5), 269-277.
- Francis, B. 2008. Between Medicine, Magic, and Religion: Wonder Drugs in German Medico Pharmaceutical Treatises of the thirteenth to Sixteenth Centuries. Speculum, 83(1), 1-57.
- Huang, D., Ou, B., Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry, 53(6), 1841-1856.
- Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650.
- Jana, S., Pal, T. (2007). Synthesis, characterization and catalytic application of silver nanoshell coated functionalized polystyrene beads. Journal of nanoscience and nanotechnology, 7(6), 2151-2156.
- Jayarambabu, N., Akshaykranth, A., Rao, T. V., Rao, K. V., Kumar, R. R. (2020). Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Materials Letters, 259, 126813.
- Jayathilakan, K., Sharma, G. K., Radhakrishna, K., & Bawa, A. S. (2007). Antioxidant potential of synthetic and natural antioxidants and its effect on warmed-over-flavour in different species of meat. Food Chemistry, 105(3), 908-916.
- Jodallah, N. B. E. (2013). Antioxidant and antimicrobial activity of Mandragora autumnalis Bertol extracts (Doctoral dissertation).
- Kanipandian, N., Kannan, S., Ramesh, R., Subramanian, P., Thirumurugan, R. (2014). Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Materials Research Bulletin, 49, 494-502.
- Khalil MMH, Ismail EH, El-Magdoub F. Biosynthesis of Au nanoparticles using olive leaf extract. Arab.J. Chem. 2010.
- Kharat, S. N., and Mendhulkar, V. D. (2016). Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater. Sci. Eng. C 62, 719–724.
- Mahmoodi, N. O., Jalalifard, Z., Fathanbari, G. P. (2020). Green synthesis of bis‐coumarin derivatives using Fe (SD) 3 as a catalyst and investigation of their biological activities. Journal of the Chinese Chemical Society, 67(1), 172-182.
- Mehmood, A., Murtaza, G., Bhatti, T. M., Kausar, R. (2014). Enviro-friendly synthesis of silver nanoparticles using Berberis lycium leaf extract and their antibacterial efficacy. Acta Metallurgica Sinica (English Letters), 27(1), 75-80.
- Mohanta, Y. K., Panda, S. K., Jayabalan, R., Sharma, N., Bastia, A. K., Mohanta, T. K. (2017). Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Frontiers in molecular biosciences, 4, 14.
- Muthukrishnan, S., Bhakya, S., Kumar, T. S., & Rao, M. V. (2015). Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii–An endemic species. Industrial crops and products, 63, 119-124.
- Nakkala, J. R., Mata, R., Gupta, A. K., Sadras, S. R. (2014). Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. European journal of medicinal chemistry, 85, 784-794.
- Norshazila, S., Syed Zahir, I., Mustapha Suleiman, K., Aisyah, M. R., & Kamarul Rahim, K. (2010). Antioxidant levels and activities of selected seeds of malaysian tropical fruits. Malaysian Journal of Nutrition, 16(1).
- Öztürk, B. Y., Gürsu, B. Y., & Dağ, İ. (2020). Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89, 208-219.
- Öztürk, B. Y., Öztürk, D. (2019). Single Cell Level Microalgal green synthesis of silver nanoparticles: Confocal Microscopy and Digital Image Analysis. Eurasian Journal of Biological and Chemical Sciences, 2(2), 56-60.
- Öztürk, B. Y., Öztürk, D. (2020). Tilia rubra DC. ekstraktı kullanılarak gümüş nanopartikülün hücre dışı biyosentezi ve antifungal aktivitesi. Biyolojik Çeşitlilik ve Koruma, 13(3), 244-251.
- Patra, J. K., and Baek, K. H. (2016). Biosynthesis of silver nanoparticles using aqueous extract of silky hairs of corn and investigation of its antibacterial and anticandidal synergistic activity and antioxidant potential. IET Nanobiotechnol. 10, 326–333.
- Priya, R. S., Geetha, D., and Ramesh, P. S. (2016). Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs – A comparative study. Ecotoxicol. Environ. Saf. 134, 308–318.
- Rai, M. K., Deshmukh, S. D., Ingle, A. P., Gade, A. K. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. Journal of applied microbiology, 112(5), 841-852.
- Rasheed, T., Bilal, M., Iqbal, H. M., Li, C. (2017). Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids and Surfaces B: Biointerfaces, 158, 408-415.
- Rónavári, A., Kovács, D., Igaz, N., Vágvölgyi, C., Boros, I. M., Kónya, Z., Pfeiffer, I. ve Kiricsi, M. ( 2017). Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study, International journal of nanomedicine, 12, 871.
- Sands, D. E. (1993). Introduction to crystallography. Courier Corporation.
- Saratale, G. D., Saratale, R. G., Benelli, G., Kumar, G., Pugazhendhi, A., Kim, D. S., Shin, H. S. (2017). Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against food borne bacteria. Journal of Cluster Science, 28(3), 1709-1727.
- Scherer, R., & Godoy, H. T. (2009). Antioxidant activity index (AAI) by the 2, 2-diphenyl-1-picrylhydrazyl method. Food chemistry, 112(3), 654-658.
- Sellappan, S., Akoh, C. C., & Krewer, G. (2002). Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. Journal of agricultural and food chemistry, 50(8), 2432-2438.
- Thatoi, P., Kerry, R. G., Gouda, S., Das, G., Pramanik, K., Thatoi, H., Patra, J. K. (2016). Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. Journal of Photochemistry and Photobiology B: Biology, 163, 311-318.
- Vivek, R., Thangam, R., Muthuchelian, K., Gunasekaran, P., Kaveri, K., Kannan, S. (2012). Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochemistry, 47(12), 2405-2410.
- Wang, X. P., Yu, Y., Hu, X. F., & Gao, L. (2000). Hydrophilicity of TiO2 films prepared by liquid phase deposition. Thin Solid Films, 371(1-2), 148-152.
- Yousaf, H., Mehmood, A., Ahmad, K. S., & Raffi, M. (2020). Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Materials Science and Engineering: C, 112, 110901.
- Zin, Z. M., Hamid, A. A., Osman, A., & Saari, N. (2006). Antioxidative activities of chromatographic fractions obtained from root, fruit and leaf of Mengkudu (Morinda citrifolia L.). Food Chemistry, 94(2), 169-178.