Year 2024,
Volume: 17 Issue: 2, 551 - 562, 31.08.2024
Vael Hajahmad
,
Rawad Alawadı
References
- [1] F. A. Aharonian, A. A. Belyanin, E. V Derishev, V. V Kocharovsky, and V. V Ko-charovsky, “Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics,” Phys. Rev. D, vol. 66, no. 2, p. 23005, 2002.
- [2] P. H. Frampton, P. Q. Hung, and M. Sher, “Quarks and leptons beyond the third gen-eration,” Phys. Rep., vol. 330, no. 5–6, pp. 263–348, 2000.
- [3] E. Arganda and M. J. Herrero, “Lepton flavour violation in constrained MSSM-seesaw models,” arXiv Prepr. arXiv0810.0160, 2008.
- [4] T. Goto, Y. Okada, T. Shindou, M. Tanaka, and R. Watanabe, “Lepton flavor violation in the supersymmetric seesaw model after the LHC 8 TeV run,” Phys. Rev. D, vol. 91, no. 3, p. 33007, 2015.
- [5] C. Csaki, “The minimal supersymmetric standard model,” Mod. Phys. Lett. A, vol. 11, no. 08, pp. 599–613, 1996.
- [6] J. D. Lykken, “Beyond the standard model,” arXiv Prepr. arXiv1005.1676, 2010.
- [7] A. Belyaev, D. Ross, A. Belyaev, and D. Ross, “Beyond the Standard Model (BSM),” Basics Nucl. Part. Phys., pp. 347–359, 2021.
- [8] S. Raby, “Supersymmetric grand unified theories,” Lect. Notes Phys, vol. 939, no. 1, 2017.
- [9] M. Khlopov, “What comes after the Standard Model?,” Prog. Part. Nucl. Phys., vol. 116, p. 103824, 2021.
- [10] J. Turner, “Leptonic Flavour Symmetries and their Cosmological Dynamics.” Durham University, 2017.
- [11] V. Brdar, A. J. Helmboldt, S. Iwamoto, and K. Schmitz, “Type I seesaw mechanism as the common origin of neutrino mass, baryon asymmetry, and the electroweak scale,” Phys. Rev. D, vol. 100, no. 7, p. 75029, 2019.
- [12] M. Spira, A. Djouadi, D. Graudenz, and R. M. Zerwas, “Higgs boson production at the LHC,” Nucl. Phys. B, vol. 453, no. 1–2, pp. 17–82, 1995.
- [13] M. Dine, “What is the scale of supersymmetry breaking?,” Nucl. Phys. B-Proceedings Suppl., vol. 52, no. 1–2, pp. 201–205, 1997.
- [14] A. Das, P. S. B. Dev, and R. N. Mohapatra, “Same sign versus opposite sign dileptons as a probe of low scale seesaw mechanisms,” Phys. Rev. D, vol. 97, no. 1, p. 15018, 2018.
- [15] F. Staub, “Exploring New Models in All Detail withSARAH,” Adv. High Energy Phys., vol. 2015, pp. 1–126, 2015.
- [16] S. Jana, N. Okada, and D. Raut, “Displaced vertex signature of type-I seesaw model,” Phys. Rev. D, vol. 98, no. 3, p. 35023, 2018.
- [17] J. F. Kamenik and M. Nemevšek, “Lepton flavor violation in type I+ III seesaw,” J. High Energy Phys., vol. 2009, no. 11, p. 23, 2009.
- [18] A. Abada, D. Das, A. Vicente, and C. Weiland, “Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution,” J. High Energy Phys., vol. 2012, no. 9, pp. 1–34, 2012.
- [19] J. Girrbach, S. Mertens, U. Nierste, and S. Wiesenfeldt, “Lepton flavour violation in the MSSM,” J. High Energy Phys., vol. 2010, no. 5, pp. 1–48, 2010.
- [20] J. Ellis, J. Hisano, M. Raidal, and Y. Shimizu, “New parametrization of the seesaw mechanism and applications in supersymmetric models,” Phys. Rev. D, vol. 66, no. 11, p. 115013, 2002.
- [21] M. Hirsch, F. R. Joaquim, and A. Vicente, “Constrained SUSY seesaws with a 125 GeV Higgs,” J. High Energy Phys., vol. 2012, no. 11, pp. 1–33, 2012.
- [22] Vicente. A, “Higgs Lepton Flavor Violating Decays in Two Higgs Doublet Models,”
Frontiers in Physics, vol. 2019, no. 7, pp. 00174, 2019.
- [23] T. Davidek and L. Fiorini, “Search for lepton-flavor-violating decays of bosons with the atlas detector,” Frontiers in Physics, vol. 2020, no. 8, pp.00149, 2020.
- [24] A. Canepa, “Searches for supersymmetry at the large hadron collider,” Reviews in Physics, vol. 2019, no. 4, pp.100033, 2019
- [25] K.S. Babu, I. Gogoladze and C.S. Un, “Proton lifetime in minimal susy su(5) in light of lhc results,” Journal of High Energy Physics, vol. 2022, no. 2, pp. 00164, 2022.
- [26] H. Baer, V. Barger and H. Serce, “Lepton flavor violation from susy with nonuniversal scalars,” Phys. Rev. Res, vol. 2019, no. 1, pp.033022, 2019.
- [27] ATLAS collaboration, “Search for charged lepton-flavour violation in z-boson decays with the atlas detector, ” Nat. Phys, vol. 2021, no. 17, pp. 819-825, 2021.
- [28] T. Goto, Y. Okada, T. Shindou, M. Tanaka and R. Watanabe, “Lepton flavor violation in the supersymmetric seesaw model after the lhc 8 tev run,” Phys. Rev. D, vol. 2015, pp. 033007, 2015.
- [29] J. Cao, Z. Xiong and J.M. Yang, “Lepton flavor violating z-decays in supersymmetric seesaw model,” Eur. Phys. J. C, vol. 2004, no. 32, pp. 245, 2004.
Lepton Flavor Violation of Tau Decays into Lepton-Gamma in the Minimal Supersymmetric Type-I Seesaw Model
Year 2024,
Volume: 17 Issue: 2, 551 - 562, 31.08.2024
Vael Hajahmad
,
Rawad Alawadı
Abstract
Experiments have shown that the violation of the lepton flavor so far is only in the neutrino sector (neutrino oscillation). Therefore, we predict it to happen in the charged lepton sector. We present a study of the lepton flavor violation (LFV) of Tau decays in two channels. Tau into muon-gamma and Tau into electron-gamma. The prediction is performed in the Minimal Supersymmetric Standard Model extended by Seesaw Type-I Model (MSSM-Seesaw Model). The predicted calculations of the branching ratio of the two channels are of the order of ~ 10-8 - 10-9, which is in coincidence of the sensitivity of the future colliders.
Ethical Statement
There are no ethical issues regarding the publication of this study
Supporting Institution
Erzincan binali yildirim University
Thanks
we would like to thank our university and department for supporting this work.
References
- [1] F. A. Aharonian, A. A. Belyanin, E. V Derishev, V. V Kocharovsky, and V. V Ko-charovsky, “Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics,” Phys. Rev. D, vol. 66, no. 2, p. 23005, 2002.
- [2] P. H. Frampton, P. Q. Hung, and M. Sher, “Quarks and leptons beyond the third gen-eration,” Phys. Rep., vol. 330, no. 5–6, pp. 263–348, 2000.
- [3] E. Arganda and M. J. Herrero, “Lepton flavour violation in constrained MSSM-seesaw models,” arXiv Prepr. arXiv0810.0160, 2008.
- [4] T. Goto, Y. Okada, T. Shindou, M. Tanaka, and R. Watanabe, “Lepton flavor violation in the supersymmetric seesaw model after the LHC 8 TeV run,” Phys. Rev. D, vol. 91, no. 3, p. 33007, 2015.
- [5] C. Csaki, “The minimal supersymmetric standard model,” Mod. Phys. Lett. A, vol. 11, no. 08, pp. 599–613, 1996.
- [6] J. D. Lykken, “Beyond the standard model,” arXiv Prepr. arXiv1005.1676, 2010.
- [7] A. Belyaev, D. Ross, A. Belyaev, and D. Ross, “Beyond the Standard Model (BSM),” Basics Nucl. Part. Phys., pp. 347–359, 2021.
- [8] S. Raby, “Supersymmetric grand unified theories,” Lect. Notes Phys, vol. 939, no. 1, 2017.
- [9] M. Khlopov, “What comes after the Standard Model?,” Prog. Part. Nucl. Phys., vol. 116, p. 103824, 2021.
- [10] J. Turner, “Leptonic Flavour Symmetries and their Cosmological Dynamics.” Durham University, 2017.
- [11] V. Brdar, A. J. Helmboldt, S. Iwamoto, and K. Schmitz, “Type I seesaw mechanism as the common origin of neutrino mass, baryon asymmetry, and the electroweak scale,” Phys. Rev. D, vol. 100, no. 7, p. 75029, 2019.
- [12] M. Spira, A. Djouadi, D. Graudenz, and R. M. Zerwas, “Higgs boson production at the LHC,” Nucl. Phys. B, vol. 453, no. 1–2, pp. 17–82, 1995.
- [13] M. Dine, “What is the scale of supersymmetry breaking?,” Nucl. Phys. B-Proceedings Suppl., vol. 52, no. 1–2, pp. 201–205, 1997.
- [14] A. Das, P. S. B. Dev, and R. N. Mohapatra, “Same sign versus opposite sign dileptons as a probe of low scale seesaw mechanisms,” Phys. Rev. D, vol. 97, no. 1, p. 15018, 2018.
- [15] F. Staub, “Exploring New Models in All Detail withSARAH,” Adv. High Energy Phys., vol. 2015, pp. 1–126, 2015.
- [16] S. Jana, N. Okada, and D. Raut, “Displaced vertex signature of type-I seesaw model,” Phys. Rev. D, vol. 98, no. 3, p. 35023, 2018.
- [17] J. F. Kamenik and M. Nemevšek, “Lepton flavor violation in type I+ III seesaw,” J. High Energy Phys., vol. 2009, no. 11, p. 23, 2009.
- [18] A. Abada, D. Das, A. Vicente, and C. Weiland, “Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution,” J. High Energy Phys., vol. 2012, no. 9, pp. 1–34, 2012.
- [19] J. Girrbach, S. Mertens, U. Nierste, and S. Wiesenfeldt, “Lepton flavour violation in the MSSM,” J. High Energy Phys., vol. 2010, no. 5, pp. 1–48, 2010.
- [20] J. Ellis, J. Hisano, M. Raidal, and Y. Shimizu, “New parametrization of the seesaw mechanism and applications in supersymmetric models,” Phys. Rev. D, vol. 66, no. 11, p. 115013, 2002.
- [21] M. Hirsch, F. R. Joaquim, and A. Vicente, “Constrained SUSY seesaws with a 125 GeV Higgs,” J. High Energy Phys., vol. 2012, no. 11, pp. 1–33, 2012.
- [22] Vicente. A, “Higgs Lepton Flavor Violating Decays in Two Higgs Doublet Models,”
Frontiers in Physics, vol. 2019, no. 7, pp. 00174, 2019.
- [23] T. Davidek and L. Fiorini, “Search for lepton-flavor-violating decays of bosons with the atlas detector,” Frontiers in Physics, vol. 2020, no. 8, pp.00149, 2020.
- [24] A. Canepa, “Searches for supersymmetry at the large hadron collider,” Reviews in Physics, vol. 2019, no. 4, pp.100033, 2019
- [25] K.S. Babu, I. Gogoladze and C.S. Un, “Proton lifetime in minimal susy su(5) in light of lhc results,” Journal of High Energy Physics, vol. 2022, no. 2, pp. 00164, 2022.
- [26] H. Baer, V. Barger and H. Serce, “Lepton flavor violation from susy with nonuniversal scalars,” Phys. Rev. Res, vol. 2019, no. 1, pp.033022, 2019.
- [27] ATLAS collaboration, “Search for charged lepton-flavour violation in z-boson decays with the atlas detector, ” Nat. Phys, vol. 2021, no. 17, pp. 819-825, 2021.
- [28] T. Goto, Y. Okada, T. Shindou, M. Tanaka and R. Watanabe, “Lepton flavor violation in the supersymmetric seesaw model after the lhc 8 tev run,” Phys. Rev. D, vol. 2015, pp. 033007, 2015.
- [29] J. Cao, Z. Xiong and J.M. Yang, “Lepton flavor violating z-decays in supersymmetric seesaw model,” Eur. Phys. J. C, vol. 2004, no. 32, pp. 245, 2004.