Research Article
BibTex RIS Cite

OECD Ülkelerinde Uzun Süreli Bakım Hizmetlerinin Verimliliğinin DEA Yöntemi ile Değerlendirilmesi

Year 2024, Volume: 7 Issue: 2, 376 - 387, 05.07.2024
https://doi.org/10.62425/esbder.1509324

Abstract

Amaç: Bu araştırma, OECD ülkelerinin sağlık göstergelerini kullanarak sağlık hizmetlerinin verimliliğini ölçmeyi, etkin sınırda olmayan ülkelerin verimsizliklerini belirlemeyi, kullanılmayan kaynakları hesaplamayı ve etkin sınırda olan ülkelerin süper-verimlilik değerlerini belirlemeyi amaçlamaktadır.
Yöntemler: Araştırmada, OECD ülkelerinin performansını ölçmek için 2019, pandemiden önceki son yıl, giriş odaklı CCR modeli kullanılarak veri zarflama analizi yapılmıştır. Araştırmada üç girdi ve iki çıktı değişkeni kullanılmıştır. Araştırma verilerinin analizi için R Studio paket programları kullanılmıştır
Bulgular: 15 ülkenin verimlilik ortalamasının 0,81 olduğu görülmektedir. 16 ülkeden 5'i etkin olarak belirlenmiştir. Son olarak, 17,18 süper-verimlilik değerine sahip Macaristan'ın, girdi miktarlarını 16 kat arttırsa bile etkin sınırda kalabileceği belirlenmiştir.
Sonuç: Gelişmiş ekonomilere sahip bazı OECD ülkelerinin, uzun süreli bakım hizmetlerine önemli kaynaklar ayırdığı ve kapasitelerinin yeterince yüksek seviyelerde olduğu görülmüştür. Düşük verimliliğe sahip ülkelerin, verimliliklerini artırmak için girdi kaynaklarının kullanılmayan miktarlarını azaltmaları önerilmektedir.

References

  • Ariaans, M., Linden, P., & Wendt, C. (2021). Worlds of long-term care: A typology of OECD countries. Health Policy, 125(5), 609-617.
  • Arnade, C. A. (1994). Using Data Envelopment Analysis To Measure İnternational Agricultural Efficeincy and Productivity. Washington, Economic Research Service.
  • Banker, R. D., & Thrall, R. M. (1992). Estimation of returns to scale using data envelopment analysis. European Journal of operational research, 62(1), 74-84.
  • Barreira, L. F., Paiva, A., Araújo, B., & Campos, M. J. (2023). Challenges to Systems of Long-Term Care: Mapping of the Central Concepts from an Umbrella Review. International Journal of Environmental Research and Public Health, 20(3), 1698.
  • Baysal, M., Alçılar, B., Çerçioğlu, H. ve Toklu, B., (2005), Türkiye’deki Devlet Üniversitelerinin 2004 Yılı Performanslarının, Veri Zarflama Analiz Yöntemiyle Belirlenip Buna Göre 2005 yılı Bütçe Tahsislerinin Yapılması. SAÜ Fen Bilimleri Enstitüsü Dergisi, 9(1), 67-73.
  • Björkgren, M. A., Häkkinen, U., & Linna, M. (2001). Measuring efficiency of long-term care units in Finland. Health Care Management Science, 4, 193-200.
  • Bowlin, W. F. (1998). Measuring Performance: An Introduction To Data Envelopment Analysis (DEA). The Journal of Cost Analysis, 15(2), 3-27.
  • Charnes, A., Cooper, W.W., Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.
  • Colombo, F., Llena-Nozal, A., Mercier, J., & Tjadens, F. (2011). Help wanted. Ageing and long-term care, 17(2-3), 3.
  • Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Handbook on data envelopment analysis. Springer.
  • Cooper, W., Seiford, L. ve Tone, K. (2007). Data Envelopment Analysis A Comprehensive Text With Models, Applications References And DEA- Solver Software. New York, Springer.
  • Csákvári, T., Turcsányi, K., Endrei, D., Vajda, R., Danku, N., & Boncz, I. (2015). Assessing The Efficiency Of The Long-Term Care Hospital Units In Hungary Between 2006 and 2013. Value in Health, 18(7), A527-A528.
  • Çakmak, C., & Konca, M. (2019). Seçilmiş OECD ülkelerinin ruh sağlığı hizmetleri performansının değerlendirilmesi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 7(2), 51-56.
  • Çilhoroz, Y., & Arslan-Çilhoroz, İ. (2022). Uzun Dönemli Bakım Etkinliğinin Değerlendirilmesi: OECD Ülkeleri Üzerinde Bir Araştırma. Karadeniz Sosyal Bilimler Dergisi, 14(26), 70-84.
  • Demirci, Ş., Yetim, B., & Konca, M. (2020). OECD ülkelerinde uzun dönemli bakım hizmetlerinin etkinliğinin değerlendirilmesi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 8(1), 305-313.
  • de la Maisonneuve, C. and J. Oliveira Martins (2014), "The future of health and long-term care spending", OECD Journal: Economic Studies, vol. 2014/1, https://doi.org/10.1787/eco_studies-2014-5jz0v44s66nw.
  • Dikmen, F.C. (2008), Veri Zarflama Analizi ile Üniversitelerin Etkinliğinin Ölçülmesi, Koceli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, Yıl: 3-4, Sayı: 3-6, Haziran/Aralık 2007- 2008, s.1-22.
  • Dinç, M. ve Haynes, K. E. (1999). Sources of Regional Inefficiency: An Integrated Shift-Share, Data Envelopment Analysis and Input-Output Approach. The Analysis of Regional Science, 33(4), 475.
  • Doty, P., Liu, K., & Wiener, J. (1985). An overview of long-term care. Health Care Financing Review, 6(3), 69.
  • Easton, L., Murphy, D.J. ve Pearson, J.N. (2002). Purchasing Performance Evaluation: With Data Envelopment Analysis. European Journal of Purchasing & Supply Management, 8(3), 123-134.
  • European Commission (2021, March 02). The 2021 ageing report. economic and budgetary projections for the EU member states 2019–2070 (Report No. 148). https://ec.europa.eu/info/publications/2021-ageing-report-economic-and-budgetary-projections-eu-member-states-2019-2070_en
  • Feng, Z., Glinskaya, E., Chen, H., Gong, S., Qiu, Y., Xu, J., & Yip, W. (2020). Long-term care system for older adults in China: policy landscape, challenges, and future prospects. The Lancet, 396(10259), 1362-1372.
  • Greve, B. (2016). Some concluding reflections. In Long-term care for the elderly in Europe (pp. 199-207). Routledge.
  • Jenkins, L., ve Anderson, M. (2003). Murray; Stochastics And Statistics A Multivariate Statistical Approach Yo Reducing The Number Of Variables in Data Envelopment Analysis. European Journal of Operational Research, 147(1), 51-61.
  • Kalirajan, K.P. and Shand, R.T., (1999), Frontier Production Functions andTechnical Effıcıency Measures. Journal Of Economic Surveys, 13(2), 149-172.
  • Kutlar, A. ve Bakırcı, F. (2018). Veri Zarflama Analizi (Data Envelopment Analysis DEA) Teori Ve Uygulama. Ankara, Orion Kitabevi.
  • Kocaman, M., Mutlu, M. E., Bayraktar, D., & Araz, O. M. (2012). Healthcare system efficiency analysis of OECD countries. J Ind Eng, 23(4), 14-31.
  • Kordić, L., & Višić, J. (2023). Total Factor Productıvıty Change Of Long-Term Care System In Selected Oecd Countrıes. Ekonomska misao i praksa, 32(1), 3-18.
  • Laine, J., Linna, M., Häkkinen, U., & Noro, A. (2005). Measuring the productive efficiency and clinical quality of institutional long‐term care for the elderly. Health economics, 14(3), 245-256.
  • Luasa, S.N., Dineen, D., & Zieba, M. (2018). Technical and scale efficiency in public and private Irish nursing homes–a bootstrap DEA approach. Health care management science, 21, 326-347.
  • Moreno-Serraa, R., Smith, P., & Savedoff DdF, J. D. (2012). An exploratory application of data envelopment analysis to the efficiency of health service coverage and access. Results for Development Institute.
  • OECD (2021a) Who Cares? Attracting and Retaining Care Workers for the Elderly, OECD Health Policy Studies, OECD Publishing, Paris, https://doi.org/10.1787/92c0ef68-en
  • OECD (2021b). Health at a glance 2021: OECD indicators, OECD Publishing, Paris. https://www.oecd.org/health/health-at-a-glance.
  • Olariu, G., Brad, S. (2017). Efficiency assessment of universities with DEA method based on public data. Balkan Region Conference on Engineering and Business Education, 2(1), 106-114.
  • Ozbugday, F. C., Tirgil, A., & Kose, E. G. (2020). Efficiency changes in long-term care in OECD countries: A non-parametric Malmquist Index approach. Socio-Economic Planning Sciences, 70, 100733.
  • Puig-Junoy, J. (2000). Partitioning input cost efficiency into its allocative and technical components: an empirical DEA application to hospitals. Socio-Economic Planning Sciences, 34(3), 199-218.
  • Ramanathan, R. (2003). An introduction to data envelopment analysis: A tool for performance measurement. Journal of Health Management, 13(1), 113-114.
  • Rouyendegh, B. D. (2009). Çok Ölçütlü Karar Verme Süreci İçin VZA- AHP Sıralı Hibrit Algoritması ve Bir Uygulama. Gazi Üniversitesi Sosyal Bilimler Enstitüsü, Doktora Tezi, Ankara.
  • Selamzade, F., & Özdemir, Y. (2020). COVID-19a Karşı OECD Ülkelerinin Etkinliğinin VZA ile Değerlendirilmesi. Electronic Turkish Studies, 15(4).
  • Smith, P. (1997). Model Misspecification in Data Envelopment Analysis. Annals of Operations Research, 73, 233-252.
  • Şenol, O, Kişi, M. and Eroymak, S. (2019). OECD sağlık sistemiyle Türk sağlık sisteminin veri zarflama analiziyle değerlendirilmesi. Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (35), 277-293.
  • Tokatlıoğlu, Y., & Ertong, C. B. (2020). Oecd Ülkelerinin Sağlık Sektörlerinin Etkinliğinin Veri Zarflama Analizi ile Değerlendirilmesi. TESAM Akademi Dergisi, 7(1), 251-276.
  • Trigg, L. (2011). Introduction: The demand for long-term care for older people. Eurohealth, 17(2-3), 1-2.
  • Yeşi̇laydin, G., & Alpteki̇n, N. (2016). Bulanık veri zarflama analizi ile OECD ülkelerinin sağlık alanındaki etkinliklerinin değerlendirilmesi. Sosyoekonomi, 24(30), 207-225.
  • Wichmann, A. B., Adang, E. M., Vissers, K. C., Szczerbińska, K., Kylänen, M., Payne, S., ... & PACE consortium. (2018). Technical-efficiency analysis of end-of-life care in long-term care facilities within Europe: A cross-sectional study of deceased residents in 6 EU countries (PACE). Plos one, 13(9), e0204120.
  • WHO (2011, February 27). Global status report on noncommunicable diseases 2010. World Health Organization. https://apps.who.int/iris/handle/10665/44579.
  • Wu, K. F., Hu, J. L., & Chiou, H. (2021). Degrees of shortage and uncovered ratios for long-term care in Taiwan’s regions: Evidence from dynamic DEA. International journal of environmental research and public health, 18(2), 605.

Evaluation of the Efficiency of Long-Term Care Services in OECD Countries by DEA Method

Year 2024, Volume: 7 Issue: 2, 376 - 387, 05.07.2024
https://doi.org/10.62425/esbder.1509324

Abstract

Objective: This research aims to measure the efficiency of health services by using health indicators of OECD countries, to determine inefficiencies of countries that are not at the efficient border, to calculate idle use, and to determine super-efficiency values of countries at active borders.
Methods: In the research, DEA was conducted using an input-oriented CCR model to measure the performance of the OECD countries in 2019, the last year before the pandemic. In the research, three input and two output variables were used. R Studio package programs were used for the analysis of research data.
Results: It is seen that the productivity average of 15 countries is 0.81. 5 out of 16 countries have been identified as active. Finally, it has been determined that Hungary, with a super-efficiency value of 17.18, can still be on an efficient border even if it increases its input amounts 16 times.
Conclusion: A notable observation is that some OECD countries with developed economies allocate substantial resources to long-term care services, and their capacities are at sufficiently high levels. It is recommended that low-productivity countries should reduce the idle use of input resources to increase their productivity.

References

  • Ariaans, M., Linden, P., & Wendt, C. (2021). Worlds of long-term care: A typology of OECD countries. Health Policy, 125(5), 609-617.
  • Arnade, C. A. (1994). Using Data Envelopment Analysis To Measure İnternational Agricultural Efficeincy and Productivity. Washington, Economic Research Service.
  • Banker, R. D., & Thrall, R. M. (1992). Estimation of returns to scale using data envelopment analysis. European Journal of operational research, 62(1), 74-84.
  • Barreira, L. F., Paiva, A., Araújo, B., & Campos, M. J. (2023). Challenges to Systems of Long-Term Care: Mapping of the Central Concepts from an Umbrella Review. International Journal of Environmental Research and Public Health, 20(3), 1698.
  • Baysal, M., Alçılar, B., Çerçioğlu, H. ve Toklu, B., (2005), Türkiye’deki Devlet Üniversitelerinin 2004 Yılı Performanslarının, Veri Zarflama Analiz Yöntemiyle Belirlenip Buna Göre 2005 yılı Bütçe Tahsislerinin Yapılması. SAÜ Fen Bilimleri Enstitüsü Dergisi, 9(1), 67-73.
  • Björkgren, M. A., Häkkinen, U., & Linna, M. (2001). Measuring efficiency of long-term care units in Finland. Health Care Management Science, 4, 193-200.
  • Bowlin, W. F. (1998). Measuring Performance: An Introduction To Data Envelopment Analysis (DEA). The Journal of Cost Analysis, 15(2), 3-27.
  • Charnes, A., Cooper, W.W., Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.
  • Colombo, F., Llena-Nozal, A., Mercier, J., & Tjadens, F. (2011). Help wanted. Ageing and long-term care, 17(2-3), 3.
  • Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Handbook on data envelopment analysis. Springer.
  • Cooper, W., Seiford, L. ve Tone, K. (2007). Data Envelopment Analysis A Comprehensive Text With Models, Applications References And DEA- Solver Software. New York, Springer.
  • Csákvári, T., Turcsányi, K., Endrei, D., Vajda, R., Danku, N., & Boncz, I. (2015). Assessing The Efficiency Of The Long-Term Care Hospital Units In Hungary Between 2006 and 2013. Value in Health, 18(7), A527-A528.
  • Çakmak, C., & Konca, M. (2019). Seçilmiş OECD ülkelerinin ruh sağlığı hizmetleri performansının değerlendirilmesi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 7(2), 51-56.
  • Çilhoroz, Y., & Arslan-Çilhoroz, İ. (2022). Uzun Dönemli Bakım Etkinliğinin Değerlendirilmesi: OECD Ülkeleri Üzerinde Bir Araştırma. Karadeniz Sosyal Bilimler Dergisi, 14(26), 70-84.
  • Demirci, Ş., Yetim, B., & Konca, M. (2020). OECD ülkelerinde uzun dönemli bakım hizmetlerinin etkinliğinin değerlendirilmesi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 8(1), 305-313.
  • de la Maisonneuve, C. and J. Oliveira Martins (2014), "The future of health and long-term care spending", OECD Journal: Economic Studies, vol. 2014/1, https://doi.org/10.1787/eco_studies-2014-5jz0v44s66nw.
  • Dikmen, F.C. (2008), Veri Zarflama Analizi ile Üniversitelerin Etkinliğinin Ölçülmesi, Koceli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, Yıl: 3-4, Sayı: 3-6, Haziran/Aralık 2007- 2008, s.1-22.
  • Dinç, M. ve Haynes, K. E. (1999). Sources of Regional Inefficiency: An Integrated Shift-Share, Data Envelopment Analysis and Input-Output Approach. The Analysis of Regional Science, 33(4), 475.
  • Doty, P., Liu, K., & Wiener, J. (1985). An overview of long-term care. Health Care Financing Review, 6(3), 69.
  • Easton, L., Murphy, D.J. ve Pearson, J.N. (2002). Purchasing Performance Evaluation: With Data Envelopment Analysis. European Journal of Purchasing & Supply Management, 8(3), 123-134.
  • European Commission (2021, March 02). The 2021 ageing report. economic and budgetary projections for the EU member states 2019–2070 (Report No. 148). https://ec.europa.eu/info/publications/2021-ageing-report-economic-and-budgetary-projections-eu-member-states-2019-2070_en
  • Feng, Z., Glinskaya, E., Chen, H., Gong, S., Qiu, Y., Xu, J., & Yip, W. (2020). Long-term care system for older adults in China: policy landscape, challenges, and future prospects. The Lancet, 396(10259), 1362-1372.
  • Greve, B. (2016). Some concluding reflections. In Long-term care for the elderly in Europe (pp. 199-207). Routledge.
  • Jenkins, L., ve Anderson, M. (2003). Murray; Stochastics And Statistics A Multivariate Statistical Approach Yo Reducing The Number Of Variables in Data Envelopment Analysis. European Journal of Operational Research, 147(1), 51-61.
  • Kalirajan, K.P. and Shand, R.T., (1999), Frontier Production Functions andTechnical Effıcıency Measures. Journal Of Economic Surveys, 13(2), 149-172.
  • Kutlar, A. ve Bakırcı, F. (2018). Veri Zarflama Analizi (Data Envelopment Analysis DEA) Teori Ve Uygulama. Ankara, Orion Kitabevi.
  • Kocaman, M., Mutlu, M. E., Bayraktar, D., & Araz, O. M. (2012). Healthcare system efficiency analysis of OECD countries. J Ind Eng, 23(4), 14-31.
  • Kordić, L., & Višić, J. (2023). Total Factor Productıvıty Change Of Long-Term Care System In Selected Oecd Countrıes. Ekonomska misao i praksa, 32(1), 3-18.
  • Laine, J., Linna, M., Häkkinen, U., & Noro, A. (2005). Measuring the productive efficiency and clinical quality of institutional long‐term care for the elderly. Health economics, 14(3), 245-256.
  • Luasa, S.N., Dineen, D., & Zieba, M. (2018). Technical and scale efficiency in public and private Irish nursing homes–a bootstrap DEA approach. Health care management science, 21, 326-347.
  • Moreno-Serraa, R., Smith, P., & Savedoff DdF, J. D. (2012). An exploratory application of data envelopment analysis to the efficiency of health service coverage and access. Results for Development Institute.
  • OECD (2021a) Who Cares? Attracting and Retaining Care Workers for the Elderly, OECD Health Policy Studies, OECD Publishing, Paris, https://doi.org/10.1787/92c0ef68-en
  • OECD (2021b). Health at a glance 2021: OECD indicators, OECD Publishing, Paris. https://www.oecd.org/health/health-at-a-glance.
  • Olariu, G., Brad, S. (2017). Efficiency assessment of universities with DEA method based on public data. Balkan Region Conference on Engineering and Business Education, 2(1), 106-114.
  • Ozbugday, F. C., Tirgil, A., & Kose, E. G. (2020). Efficiency changes in long-term care in OECD countries: A non-parametric Malmquist Index approach. Socio-Economic Planning Sciences, 70, 100733.
  • Puig-Junoy, J. (2000). Partitioning input cost efficiency into its allocative and technical components: an empirical DEA application to hospitals. Socio-Economic Planning Sciences, 34(3), 199-218.
  • Ramanathan, R. (2003). An introduction to data envelopment analysis: A tool for performance measurement. Journal of Health Management, 13(1), 113-114.
  • Rouyendegh, B. D. (2009). Çok Ölçütlü Karar Verme Süreci İçin VZA- AHP Sıralı Hibrit Algoritması ve Bir Uygulama. Gazi Üniversitesi Sosyal Bilimler Enstitüsü, Doktora Tezi, Ankara.
  • Selamzade, F., & Özdemir, Y. (2020). COVID-19a Karşı OECD Ülkelerinin Etkinliğinin VZA ile Değerlendirilmesi. Electronic Turkish Studies, 15(4).
  • Smith, P. (1997). Model Misspecification in Data Envelopment Analysis. Annals of Operations Research, 73, 233-252.
  • Şenol, O, Kişi, M. and Eroymak, S. (2019). OECD sağlık sistemiyle Türk sağlık sisteminin veri zarflama analiziyle değerlendirilmesi. Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (35), 277-293.
  • Tokatlıoğlu, Y., & Ertong, C. B. (2020). Oecd Ülkelerinin Sağlık Sektörlerinin Etkinliğinin Veri Zarflama Analizi ile Değerlendirilmesi. TESAM Akademi Dergisi, 7(1), 251-276.
  • Trigg, L. (2011). Introduction: The demand for long-term care for older people. Eurohealth, 17(2-3), 1-2.
  • Yeşi̇laydin, G., & Alpteki̇n, N. (2016). Bulanık veri zarflama analizi ile OECD ülkelerinin sağlık alanındaki etkinliklerinin değerlendirilmesi. Sosyoekonomi, 24(30), 207-225.
  • Wichmann, A. B., Adang, E. M., Vissers, K. C., Szczerbińska, K., Kylänen, M., Payne, S., ... & PACE consortium. (2018). Technical-efficiency analysis of end-of-life care in long-term care facilities within Europe: A cross-sectional study of deceased residents in 6 EU countries (PACE). Plos one, 13(9), e0204120.
  • WHO (2011, February 27). Global status report on noncommunicable diseases 2010. World Health Organization. https://apps.who.int/iris/handle/10665/44579.
  • Wu, K. F., Hu, J. L., & Chiou, H. (2021). Degrees of shortage and uncovered ratios for long-term care in Taiwan’s regions: Evidence from dynamic DEA. International journal of environmental research and public health, 18(2), 605.
There are 47 citations in total.

Details

Primary Language English
Subjects Health Services and Systems (Other)
Journal Section Articles
Authors

Ferit Sevim 0000-0001-6935-9650

Osman Şenol

Fevzi Akbulut This is me

Publication Date July 5, 2024
Submission Date October 28, 2023
Acceptance Date February 23, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Sevim, F., Şenol, O., & Akbulut, F. (2024). Evaluation of the Efficiency of Long-Term Care Services in OECD Countries by DEA Method. Ebelik Ve Sağlık Bilimleri Dergisi, 7(2), 376-387. https://doi.org/10.62425/esbder.1509324
AMA Sevim F, Şenol O, Akbulut F. Evaluation of the Efficiency of Long-Term Care Services in OECD Countries by DEA Method. Journal of Midwifery and Health Sciences. July 2024;7(2):376-387. doi:10.62425/esbder.1509324
Chicago Sevim, Ferit, Osman Şenol, and Fevzi Akbulut. “Evaluation of the Efficiency of Long-Term Care Services in OECD Countries by DEA Method”. Ebelik Ve Sağlık Bilimleri Dergisi 7, no. 2 (July 2024): 376-87. https://doi.org/10.62425/esbder.1509324.
EndNote Sevim F, Şenol O, Akbulut F (July 1, 2024) Evaluation of the Efficiency of Long-Term Care Services in OECD Countries by DEA Method. Ebelik ve Sağlık Bilimleri Dergisi 7 2 376–387.
IEEE F. Sevim, O. Şenol, and F. Akbulut, “Evaluation of the Efficiency of Long-Term Care Services in OECD Countries by DEA Method”, Journal of Midwifery and Health Sciences, vol. 7, no. 2, pp. 376–387, 2024, doi: 10.62425/esbder.1509324.
ISNAD Sevim, Ferit et al. “Evaluation of the Efficiency of Long-Term Care Services in OECD Countries by DEA Method”. Ebelik ve Sağlık Bilimleri Dergisi 7/2 (July 2024), 376-387. https://doi.org/10.62425/esbder.1509324.
JAMA Sevim F, Şenol O, Akbulut F. Evaluation of the Efficiency of Long-Term Care Services in OECD Countries by DEA Method. Journal of Midwifery and Health Sciences. 2024;7:376–387.
MLA Sevim, Ferit et al. “Evaluation of the Efficiency of Long-Term Care Services in OECD Countries by DEA Method”. Ebelik Ve Sağlık Bilimleri Dergisi, vol. 7, no. 2, 2024, pp. 376-87, doi:10.62425/esbder.1509324.
Vancouver Sevim F, Şenol O, Akbulut F. Evaluation of the Efficiency of Long-Term Care Services in OECD Countries by DEA Method. Journal of Midwifery and Health Sciences. 2024;7(2):376-87.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

2992931409