BibTex RIS Cite
Year 2018, Volume: 19 Issue: 3, 756 - 767, 01.09.2018

Abstract

References

  • [1] Chang CY, Kai F, GaAs High-Speed Devices: Physics, Technology, and Circuit Applications. Wiley, 1994.
  • [2] Kundu S, Kumar A, Banerjee S, Banerji P. Electrical properties and barrier modification of GaAs MIS Schottky device based on MEH-PPV organic interfacial layer. Mat Sci Semicon Proc 2012; 15: 386-392.
  • [3] Vearey-Roberts AR, Evans DA. Modification of GaAs Schottky diodes by thin organic interlayers. Appl Phys Lett 2005; 86
  • [4] Zahn DRT, Park S, Kampen TU. Tuning Schottky barrier heights by organic modification of metal-semiconductor contacts. Vacuum 2002; 67: 101-113.
  • [5] Vural O, Safak Y, Altındal S, Türüt A. Current-voltage characteristics of Al/Rhodamine-101/GaAs structures in the wide temperature range. Curr Appl Phys 2010; 10: 761-765.
  • [6] Aydın ME, Soylu M, Yakuphanoglu F, Farooq WA. Controlling of electronic parameters of GaAs Schottky diode by poly(3,4-ethylenedioxithiophene)-block-poly(ethylene glycol) organic interlayer. Microelectron Eng 2011; 88: 867-871.
  • [7] Şimşir N, Şafak H, Yüksel ÖF, Kuş M. Investigation of current–voltage and capacitance–voltage characteristics of Ag/perylene-monoimide/GaAs Schottky diode. Curr Appl Phys 2012; 12: 1510-1514.
  • [8] Soylu M, Yakuphanoglu F. Barrier height enhancement and temperature dependence of the electrical characteristics of Al Schottky contacts on p-GaAs with organic Rhodamine B interfacial layer. Superlattice Microst 2012; 52: 470-483.
  • [9] Kampen T et al. Schottky contacts on passivated GaAs(100) surfaces: barrier height and reactivity. Appl Surf Sci 2004; 234: 341-348.
  • [10] Dorsten J, Maslar J, Bohn P. Near‐surface electronic structure in GaAs (100) modified with self‐assembled monolayers of octadecylthiol. Appl Phys Lett 1995; 66: 1755-1757.
  • [11] Farag AAM, Yahia IS. Rectification and barrier height inhomogeneous in Rhodamine B based organic Schottky diode. Synthetic Met 2011; 161: 32-39.
  • [12] Yahia IS, Farag AAM, Yakuphanoglu F, Farooq WA. Temperature dependence of electronic parameters of organic Schottky diode based on fluorescein sodium salt. Synthetic Met 2011; 161: 881-887.
  • [13] Zahn DRT, Kampen TU, Mendez H. Transport gap of organic semiconductors in organic modified Schottky contacts. Appl Surf Sci 2003; 212: 423-427.
  • [14] Vilan A, Ghabboun J, Cahen D. Molecule-metal polarization at rectifying GaAs interfaces. J Phys Chem B 2003; 107: 6360-6376.
  • [15] Bobby A, Shiwakoti N, Gupta P, Antony B. Barrier modification of Au/GaAs Schottky structure by organic interlayer. Indian Journal of Physics 2015: 1-6.
  • [16] Tugluoglu N, Caliskan F, Yuksel OF. Analysis of inhomogeneous barrier and capacitance parameters for Al/rubrene/GaAs (100) Schottky diodes. Synthetic Met 2015; 199: 270-275.
  • [17] Akkaya A, Karaaslan T, Dede M, Çetin H, Ayyıldız E. Investigation of temperature dependent electrical properties of Ni/Al0.26Ga0.74N Schottky barrier diodes. Thin Solid Films 2014; 564: 367-374.
  • [18] Akkaya A, Esmer L, Kantar BB, Cetin H, Ayyildiz E. Effect of thermal annealing on electrical and structural properties of Ni/Au/GaN Schottky contacts. Microelectron Eng 2014; 130: 62-68.
  • [19] Párkányi C, Boniface C, Aaron JJ, Maafi M. A quantitative study of the effect of solvent on the electronic absorption and fluorescence spectra of substituted phenothiazines: evaluation of their ground and excited singlet-state dipole moments. Spectrochimica Acta Part A: Molecular Spectroscopy 1993; 49: 1715-1725.
  • [20] Heger D, Jirkovsk J, Kln P. Aggregation of Methylene Blue in Frozen Aqueous Solutions Studied by Absorption Spectroscopy. The Journal of Physical Chemistry A 2005; 109: 6702-6709.
  • [21] Cenens J, Schoonheydt R. Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension. Clays and Clay Minerals 1988; 36: 214-224.
  • [22] Tauc J, Amorphous and liquid semiconductors. New York: Plenum Press, 1974.
  • [23] Rhoderick EH, Williams RH, Metal-Semiconductor Contacts. Oxford: Clarendon Press 1988.
  • [24] Card HC, Rhoderick EH. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics 1971; 4: 1589.
  • [25] Tung RT, Sullivan JP, Schrey F. On the Inhomogeneity of Schottky Barriers. Mat Sci Eng B-Solid 1992; 14: 266-280.
  • [26] Sze S, Physics of Semiconductor Devices. New York: John Wiley & Sons, 1981.
  • [27] Özdemir AF, Türüt A, Kökçe A. The double Gaussian distribution of barrier heights in Au/GaAs Schottky diodes from I–V–T characteristics. Semicond Sci Tech 2006; 21: 298-302.
  • [28] Leroy WP, Opsomer K, Forment S, Van Meirhaeghe RL. The barrier height inhomogeneity in identically prepared Au/GaAs Schottky barrier diodes. Solid State Electron 2005; 49: 878-883.
  • [29] Cheung SK, Cheung NW. Extraction of Schottky Diode Parameters from Forward Current-Voltage Characteristics. Appl Phys Lett 1986; 49: 85-87.
  • [30] Norde H. A modified forward I-V plot for Schottky diodes with high series resistance. J Appl Phys 1979; 50: 5052-5053.
  • [31] Reddy VR, Manjunath V, Janardhanam V, Kil YH, Choi CJ. Electrical Properties and Current Transport Mechanisms of the Au/GaN Schottky Structure with Solution- Processed High-k BaTiO3 Interlayer. J Electron Mater 2014; 43: 3499-3507.
  • [32] Kumar AA et al. Electrical properties of Pt/type Ge Schottky contact with PEDOT: PSS interlayer. J Alloy Compd 2013; 549: 18-21.
  • [33] Reddy VR. Electrical properties and transport mechanisms of Au/Ba0. 6Sr0. 4TiO3/GaN metal–insulator–semiconductor (MIS) diode at high temperature range. Applied Physics A 2016; 122: 1-7.
  • [34] Murthy V, Rao TP, Sobhanadri J. Dielectric properties of some dyes in the radio-frequency region. Journal of Physics D: Applied Physics 1977; 10: 2405.
  • [35] Lin J, Banerjee S, Lee J, Teng C. Soft breakdown in titanium-silicided shallow source/drain junctions. Electron Device Letters, IEEE 1990; 11: 191-193.
  • [36] Janardhanam V et al. Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers. J Alloy Compd 2010; 504: 146-150.
  • [37] Sullivan JP, Tung RT, Pinto MR, Graham WR. Electron-Transport of Inhomogeneous Schottky Barriers - a Numerical Study. J Appl Phys 1991; 70: 7403-7424.
  • [38] Werner JH, Guttler HH. Barrier Inhomogeneities at Schottky Contacts. J Appl Phys 1991; 69: 1522-1533.
  • [39] Song YP, Vanmeirhaeghe RL, Laflere WH, Cardon F. On the Difference in Apparent Barrier Height as Obtained from Capacitance-Voltage and Current-Voltage-Temperature Measurements on Al/P-Inp Schottky Barriers. Solid State Electron 1986; 29: 633-638.
  • [40] Monch W. Schottky Contacts on Ternary Compound Semiconductors - Compositional Variations of Barrier Heights. Appl Phys Lett 1995; 67: 2209-2211.
  • [41] Boyarbay B, Çetin H, Kaya M, Ayyildiz E. Correlation between barrier heights and ideality factors of H-terminated Sn/p-Si(100) Schottky barrier diodes. Microelectron Eng 2008; 85: 721-726.
  • [42] Brillson LJ, Contacts to Semiconductors: Fundamentals and Technology. Noyes, 1993.
  • [43] Vasudevan S et al. Controlling transistor threshold voltages using molecular dipoles. J Appl Phys 2009; 105: 093703.
  • [44] Bahuguna A et al. Probing molecule-semiconductor interfaces through Metal Molecule Semiconductor transport characteristics. arXiv preprint arXiv:0912.1682 2009
  • [45] Hudait MK, Krupanidhi SB. Interface states density distribution in Au/GaAs Schottky diodes on n-Ge and n-GaAs substrates. Mat Sci Eng B-Solid 2001; 87: 141-147.
  • [46] Hill WA, Coleman CC. A Single-Frequency Approximation for Interface-State Density Determination. Solid State Electron 1980; 23: 987-993.
  • [47] Cavas M. Analysis of interface states of GaAs-rhodamine hybrid diode by Hill-Coleman method. J Phys Chem Solids 2013; 74: 892-895.
  • [48] Chattopadhyay P, Raychaudhuri B. New Technique for the Determination of Series Resistance of Schottky-Barrier Diodes. Solid State Electron 1992; 35: 1023-1024.
  • [49] Chattopadhyay P, Raychaudhuri B. Frequency-Dependence of Forward Capacitance Voltage Characteristics of Schottky-Barrier Diodes. Solid State Electron 1993; 36: 605-610.
  • [50] Nicollian EH, Brews JR, Mos (Metal Oxide Semiconductor) Physics And Technology. New York: Wiley-Interscience, 1982.
  • [51] Tascioglu I, Soylu M, Altındal S, Al-Ghamdi AA, Yakuphanoglu F. Effects of interface states and series resistance on electrical properties of Al/nanostructure CdO/p-GaAs diode. J Alloy Compd 2012; 541: 462-467.

The current–voltage and capacitance–voltage characterization of the Au/Methylene Blue/n-GaAs organic-modified Schottky diodes

Year 2018, Volume: 19 Issue: 3, 756 - 767, 01.09.2018

Abstract

We report the electrical properties of the Au/n–GaAs devices with and without thin organic interface layer. Methylene blue (MB) is a heterocyclic aromatic chemical compound with the molecular formula C16H18N3SCl. The MB layer was formed by spin coating technique on chemically cleaned gallium arsenide (GaAs) substrate. The current–voltage (I–V) and the frequency dependent capacitance–voltage (C–V) characteristics of the Au/MB/n–GaAs metal-insulator-semiconductor (MIS) and Au/n–GaAs metal-semiconductor (MS) devices have been investigated at room temperature. The MS and MIS devices I–V characteristics the showed a good rectification, and they were analyzed based on the thermionic emission (TE) theory. The ideality factor (n) and the barrier height (Φb(IV)) from the I–V characteristics was determined as 1.131±0.006 and 0.782±0.005 eV for MS device and 1.336±0.057 and 0.950±0.008 eV for MIS device, respectively. A Cheung’s method and modified Norde's function has been used to extract the parameters including the (Φb) and the series resistance (RS). Also the values of the barrier height obtained from the C–V measurements (Φb(CV)) of the MS and MIS was 0.863±0.034 eV and 1.187±0.093 eV, at 1 MHz, respectively.Distributions of the interface state density (Dit) of the MS and MIS devices were derivate from I–V and C–V measurements. Our results indicates that the Au/MB/n–GaAs device had lower interface state density values than the Au/GaAs device. Also non-saturated reverse bias current investigated by the using a Pole-Frenkel emission model. Furthermore, the optical and morphological properties of MB layer were investigated by the Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and UV-vis Spectrophotometer (UV-vis).Finally, we showed that, increasing Φb and decreasing Dit and improving electrical parameters of MIS devices indicates that, thin MB interface layer could prefer for modification of Au/n–GaAs devices.

References

  • [1] Chang CY, Kai F, GaAs High-Speed Devices: Physics, Technology, and Circuit Applications. Wiley, 1994.
  • [2] Kundu S, Kumar A, Banerjee S, Banerji P. Electrical properties and barrier modification of GaAs MIS Schottky device based on MEH-PPV organic interfacial layer. Mat Sci Semicon Proc 2012; 15: 386-392.
  • [3] Vearey-Roberts AR, Evans DA. Modification of GaAs Schottky diodes by thin organic interlayers. Appl Phys Lett 2005; 86
  • [4] Zahn DRT, Park S, Kampen TU. Tuning Schottky barrier heights by organic modification of metal-semiconductor contacts. Vacuum 2002; 67: 101-113.
  • [5] Vural O, Safak Y, Altındal S, Türüt A. Current-voltage characteristics of Al/Rhodamine-101/GaAs structures in the wide temperature range. Curr Appl Phys 2010; 10: 761-765.
  • [6] Aydın ME, Soylu M, Yakuphanoglu F, Farooq WA. Controlling of electronic parameters of GaAs Schottky diode by poly(3,4-ethylenedioxithiophene)-block-poly(ethylene glycol) organic interlayer. Microelectron Eng 2011; 88: 867-871.
  • [7] Şimşir N, Şafak H, Yüksel ÖF, Kuş M. Investigation of current–voltage and capacitance–voltage characteristics of Ag/perylene-monoimide/GaAs Schottky diode. Curr Appl Phys 2012; 12: 1510-1514.
  • [8] Soylu M, Yakuphanoglu F. Barrier height enhancement and temperature dependence of the electrical characteristics of Al Schottky contacts on p-GaAs with organic Rhodamine B interfacial layer. Superlattice Microst 2012; 52: 470-483.
  • [9] Kampen T et al. Schottky contacts on passivated GaAs(100) surfaces: barrier height and reactivity. Appl Surf Sci 2004; 234: 341-348.
  • [10] Dorsten J, Maslar J, Bohn P. Near‐surface electronic structure in GaAs (100) modified with self‐assembled monolayers of octadecylthiol. Appl Phys Lett 1995; 66: 1755-1757.
  • [11] Farag AAM, Yahia IS. Rectification and barrier height inhomogeneous in Rhodamine B based organic Schottky diode. Synthetic Met 2011; 161: 32-39.
  • [12] Yahia IS, Farag AAM, Yakuphanoglu F, Farooq WA. Temperature dependence of electronic parameters of organic Schottky diode based on fluorescein sodium salt. Synthetic Met 2011; 161: 881-887.
  • [13] Zahn DRT, Kampen TU, Mendez H. Transport gap of organic semiconductors in organic modified Schottky contacts. Appl Surf Sci 2003; 212: 423-427.
  • [14] Vilan A, Ghabboun J, Cahen D. Molecule-metal polarization at rectifying GaAs interfaces. J Phys Chem B 2003; 107: 6360-6376.
  • [15] Bobby A, Shiwakoti N, Gupta P, Antony B. Barrier modification of Au/GaAs Schottky structure by organic interlayer. Indian Journal of Physics 2015: 1-6.
  • [16] Tugluoglu N, Caliskan F, Yuksel OF. Analysis of inhomogeneous barrier and capacitance parameters for Al/rubrene/GaAs (100) Schottky diodes. Synthetic Met 2015; 199: 270-275.
  • [17] Akkaya A, Karaaslan T, Dede M, Çetin H, Ayyıldız E. Investigation of temperature dependent electrical properties of Ni/Al0.26Ga0.74N Schottky barrier diodes. Thin Solid Films 2014; 564: 367-374.
  • [18] Akkaya A, Esmer L, Kantar BB, Cetin H, Ayyildiz E. Effect of thermal annealing on electrical and structural properties of Ni/Au/GaN Schottky contacts. Microelectron Eng 2014; 130: 62-68.
  • [19] Párkányi C, Boniface C, Aaron JJ, Maafi M. A quantitative study of the effect of solvent on the electronic absorption and fluorescence spectra of substituted phenothiazines: evaluation of their ground and excited singlet-state dipole moments. Spectrochimica Acta Part A: Molecular Spectroscopy 1993; 49: 1715-1725.
  • [20] Heger D, Jirkovsk J, Kln P. Aggregation of Methylene Blue in Frozen Aqueous Solutions Studied by Absorption Spectroscopy. The Journal of Physical Chemistry A 2005; 109: 6702-6709.
  • [21] Cenens J, Schoonheydt R. Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension. Clays and Clay Minerals 1988; 36: 214-224.
  • [22] Tauc J, Amorphous and liquid semiconductors. New York: Plenum Press, 1974.
  • [23] Rhoderick EH, Williams RH, Metal-Semiconductor Contacts. Oxford: Clarendon Press 1988.
  • [24] Card HC, Rhoderick EH. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics 1971; 4: 1589.
  • [25] Tung RT, Sullivan JP, Schrey F. On the Inhomogeneity of Schottky Barriers. Mat Sci Eng B-Solid 1992; 14: 266-280.
  • [26] Sze S, Physics of Semiconductor Devices. New York: John Wiley & Sons, 1981.
  • [27] Özdemir AF, Türüt A, Kökçe A. The double Gaussian distribution of barrier heights in Au/GaAs Schottky diodes from I–V–T characteristics. Semicond Sci Tech 2006; 21: 298-302.
  • [28] Leroy WP, Opsomer K, Forment S, Van Meirhaeghe RL. The barrier height inhomogeneity in identically prepared Au/GaAs Schottky barrier diodes. Solid State Electron 2005; 49: 878-883.
  • [29] Cheung SK, Cheung NW. Extraction of Schottky Diode Parameters from Forward Current-Voltage Characteristics. Appl Phys Lett 1986; 49: 85-87.
  • [30] Norde H. A modified forward I-V plot for Schottky diodes with high series resistance. J Appl Phys 1979; 50: 5052-5053.
  • [31] Reddy VR, Manjunath V, Janardhanam V, Kil YH, Choi CJ. Electrical Properties and Current Transport Mechanisms of the Au/GaN Schottky Structure with Solution- Processed High-k BaTiO3 Interlayer. J Electron Mater 2014; 43: 3499-3507.
  • [32] Kumar AA et al. Electrical properties of Pt/type Ge Schottky contact with PEDOT: PSS interlayer. J Alloy Compd 2013; 549: 18-21.
  • [33] Reddy VR. Electrical properties and transport mechanisms of Au/Ba0. 6Sr0. 4TiO3/GaN metal–insulator–semiconductor (MIS) diode at high temperature range. Applied Physics A 2016; 122: 1-7.
  • [34] Murthy V, Rao TP, Sobhanadri J. Dielectric properties of some dyes in the radio-frequency region. Journal of Physics D: Applied Physics 1977; 10: 2405.
  • [35] Lin J, Banerjee S, Lee J, Teng C. Soft breakdown in titanium-silicided shallow source/drain junctions. Electron Device Letters, IEEE 1990; 11: 191-193.
  • [36] Janardhanam V et al. Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers. J Alloy Compd 2010; 504: 146-150.
  • [37] Sullivan JP, Tung RT, Pinto MR, Graham WR. Electron-Transport of Inhomogeneous Schottky Barriers - a Numerical Study. J Appl Phys 1991; 70: 7403-7424.
  • [38] Werner JH, Guttler HH. Barrier Inhomogeneities at Schottky Contacts. J Appl Phys 1991; 69: 1522-1533.
  • [39] Song YP, Vanmeirhaeghe RL, Laflere WH, Cardon F. On the Difference in Apparent Barrier Height as Obtained from Capacitance-Voltage and Current-Voltage-Temperature Measurements on Al/P-Inp Schottky Barriers. Solid State Electron 1986; 29: 633-638.
  • [40] Monch W. Schottky Contacts on Ternary Compound Semiconductors - Compositional Variations of Barrier Heights. Appl Phys Lett 1995; 67: 2209-2211.
  • [41] Boyarbay B, Çetin H, Kaya M, Ayyildiz E. Correlation between barrier heights and ideality factors of H-terminated Sn/p-Si(100) Schottky barrier diodes. Microelectron Eng 2008; 85: 721-726.
  • [42] Brillson LJ, Contacts to Semiconductors: Fundamentals and Technology. Noyes, 1993.
  • [43] Vasudevan S et al. Controlling transistor threshold voltages using molecular dipoles. J Appl Phys 2009; 105: 093703.
  • [44] Bahuguna A et al. Probing molecule-semiconductor interfaces through Metal Molecule Semiconductor transport characteristics. arXiv preprint arXiv:0912.1682 2009
  • [45] Hudait MK, Krupanidhi SB. Interface states density distribution in Au/GaAs Schottky diodes on n-Ge and n-GaAs substrates. Mat Sci Eng B-Solid 2001; 87: 141-147.
  • [46] Hill WA, Coleman CC. A Single-Frequency Approximation for Interface-State Density Determination. Solid State Electron 1980; 23: 987-993.
  • [47] Cavas M. Analysis of interface states of GaAs-rhodamine hybrid diode by Hill-Coleman method. J Phys Chem Solids 2013; 74: 892-895.
  • [48] Chattopadhyay P, Raychaudhuri B. New Technique for the Determination of Series Resistance of Schottky-Barrier Diodes. Solid State Electron 1992; 35: 1023-1024.
  • [49] Chattopadhyay P, Raychaudhuri B. Frequency-Dependence of Forward Capacitance Voltage Characteristics of Schottky-Barrier Diodes. Solid State Electron 1993; 36: 605-610.
  • [50] Nicollian EH, Brews JR, Mos (Metal Oxide Semiconductor) Physics And Technology. New York: Wiley-Interscience, 1982.
  • [51] Tascioglu I, Soylu M, Altındal S, Al-Ghamdi AA, Yakuphanoglu F. Effects of interface states and series resistance on electrical properties of Al/nanostructure CdO/p-GaAs diode. J Alloy Compd 2012; 541: 462-467.
There are 51 citations in total.

Details

Journal Section Articles
Authors

Abdullah Akkaya

Publication Date September 1, 2018
Published in Issue Year 2018 Volume: 19 Issue: 3

Cite

AMA Akkaya A. The current–voltage and capacitance–voltage characterization of the Au/Methylene Blue/n-GaAs organic-modified Schottky diodes. Estuscience - Se. September 2018;19(3):756-767.