Research Article
BibTex RIS Cite

ÇAPRAZLANMIŞ MODÜLLERİN HOMOLOJİLERİ ÜZERİNE HESAPLAMALAR

Year 2020, Volume: 8 Issue: 1, 1 - 13, 28.02.2020
https://doi.org/10.20290/estubtdb.522740

Abstract

Bu
çalışmada GAP kullanılarak belirli koşullar altında çaprazlanmış modüllerin
sınıflandırılması yapılmıştır.

References

  • Arvasi Z, Porter T. Simplicial and Crossed Resolutions of Commutative Algebras. Journal of Algebras 1996; 181: 426-448.
  • Arvasi Z, Porter T. Freness Conditions for 2-Crossed Modules of Commutative Algebras. Applied Categorical Structures 1998; 6: 455-471.
  • Arvasi Z, Ulualan E. On Algebraic Models for Homotopy 3 Types. Journal of Homotopy and Related Structures 2006; 1, 1: 1-27.
  • Aravsi Z, Ulualan E. Quadratic and 2 Crossed Modules of Algebras. Algebra Colloquilum 2007; 14, 4: 669-686.
  • Arvasi Z, Ulualan E. Homotopical Aspects of Commutative Algebras I Freeness Conditions for Crossed Squares. Journal of Homotopy and Related Structures 2015; 10, 3: 495-518.
  • Arvasi Z, Odabaş A. Crossed Modules of Commutative Algebras and Cat1- Algebras in GAP. Manual for the XModAlg share package for GAP4 Version 1.16. (http://www.gap-system.org/Packages/xmodalg.html) 2018.
  • Arvasi Z, Odabaş A. Computing 2-Dimensional Algebras: Crossed Modules and Cat1-Algebras. Journal of Algebra and Its Applications 2016; 15, 10: 1650185-0.
  • Casas JM. Invariantes de Módulos Cruzados en Álgebras de Lie. Ph.D. Thesis, University of Santiago, Spain, 1991.
  • Casas JM, Ladra M. Colimits in the Crossed Modules Category in Lie Algebras. Georgian Mathematical Journal 1999; 7, 3: 461-474.
  • GAP - Groups, Algotihms and Programming Version 4. Lehrstuhl D für Mathematik, RWTH Aachen Germany and School of Mathematical and Computational Sciences. U. St. Andrews, Scotland, 1997.
  • Norrie KJ. Crossed Modules and Analogues of Group Theorems. Ph.D. Thesis, King’s College, University of London, Lndon, United Kingdom, 1987.
  • Odabaş A. Crossed Modules of Algebras with GAP. Ph.D. Thesis, Osmangazi University, Eskişehir, Türkiye, 2009.
  • Odabaş A, Igaz E, Uslu EO. Isoclinism of Crossed Modules. Journal of Symbolic Computation 2016; 74: 408-424.
  • Odabaş A. Classification of Finite Simplicial Algebras. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering 2017; 18, 1:22-30.
  • Porter T. Some Categorical Results in the Category of Crossed Modules in Commutative Algebra. Journal of Algebra 1987; 109: 415-429.
  • Wensley CD, Alp M, Odabaş A, Uslu EO. Crossed Modules and Cat1 - Groups in GAP. Manual for the XMod share package for GAP4 Version 2.64. (http://www.gap-system.org/Packages/xmod.html) 2017.
  • Whitehead JHC. Combinatorial Homotopy II. Bulletin of the American Mathematical Society 1949; 55: 453-496.
  • Woronowicz SL. Differential Calculus on Compact Matrix Pseudogroups (quantum groups). Communications in Mathematical Physics 1989; 122: 125-170.
Year 2020, Volume: 8 Issue: 1, 1 - 13, 28.02.2020
https://doi.org/10.20290/estubtdb.522740

Abstract

References

  • Arvasi Z, Porter T. Simplicial and Crossed Resolutions of Commutative Algebras. Journal of Algebras 1996; 181: 426-448.
  • Arvasi Z, Porter T. Freness Conditions for 2-Crossed Modules of Commutative Algebras. Applied Categorical Structures 1998; 6: 455-471.
  • Arvasi Z, Ulualan E. On Algebraic Models for Homotopy 3 Types. Journal of Homotopy and Related Structures 2006; 1, 1: 1-27.
  • Aravsi Z, Ulualan E. Quadratic and 2 Crossed Modules of Algebras. Algebra Colloquilum 2007; 14, 4: 669-686.
  • Arvasi Z, Ulualan E. Homotopical Aspects of Commutative Algebras I Freeness Conditions for Crossed Squares. Journal of Homotopy and Related Structures 2015; 10, 3: 495-518.
  • Arvasi Z, Odabaş A. Crossed Modules of Commutative Algebras and Cat1- Algebras in GAP. Manual for the XModAlg share package for GAP4 Version 1.16. (http://www.gap-system.org/Packages/xmodalg.html) 2018.
  • Arvasi Z, Odabaş A. Computing 2-Dimensional Algebras: Crossed Modules and Cat1-Algebras. Journal of Algebra and Its Applications 2016; 15, 10: 1650185-0.
  • Casas JM. Invariantes de Módulos Cruzados en Álgebras de Lie. Ph.D. Thesis, University of Santiago, Spain, 1991.
  • Casas JM, Ladra M. Colimits in the Crossed Modules Category in Lie Algebras. Georgian Mathematical Journal 1999; 7, 3: 461-474.
  • GAP - Groups, Algotihms and Programming Version 4. Lehrstuhl D für Mathematik, RWTH Aachen Germany and School of Mathematical and Computational Sciences. U. St. Andrews, Scotland, 1997.
  • Norrie KJ. Crossed Modules and Analogues of Group Theorems. Ph.D. Thesis, King’s College, University of London, Lndon, United Kingdom, 1987.
  • Odabaş A. Crossed Modules of Algebras with GAP. Ph.D. Thesis, Osmangazi University, Eskişehir, Türkiye, 2009.
  • Odabaş A, Igaz E, Uslu EO. Isoclinism of Crossed Modules. Journal of Symbolic Computation 2016; 74: 408-424.
  • Odabaş A. Classification of Finite Simplicial Algebras. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering 2017; 18, 1:22-30.
  • Porter T. Some Categorical Results in the Category of Crossed Modules in Commutative Algebra. Journal of Algebra 1987; 109: 415-429.
  • Wensley CD, Alp M, Odabaş A, Uslu EO. Crossed Modules and Cat1 - Groups in GAP. Manual for the XMod share package for GAP4 Version 2.64. (http://www.gap-system.org/Packages/xmod.html) 2017.
  • Whitehead JHC. Combinatorial Homotopy II. Bulletin of the American Mathematical Society 1949; 55: 453-496.
  • Woronowicz SL. Differential Calculus on Compact Matrix Pseudogroups (quantum groups). Communications in Mathematical Physics 1989; 122: 125-170.
There are 18 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ahmet Faruk Aslan 0000-0003-1583-6508

Publication Date February 28, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Aslan, A. F. (2020). ÇAPRAZLANMIŞ MODÜLLERİN HOMOLOJİLERİ ÜZERİNE HESAPLAMALAR. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 8(1), 1-13. https://doi.org/10.20290/estubtdb.522740
AMA Aslan AF. ÇAPRAZLANMIŞ MODÜLLERİN HOMOLOJİLERİ ÜZERİNE HESAPLAMALAR. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. February 2020;8(1):1-13. doi:10.20290/estubtdb.522740
Chicago Aslan, Ahmet Faruk. “ÇAPRAZLANMIŞ MODÜLLERİN HOMOLOJİLERİ ÜZERİNE HESAPLAMALAR”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 8, no. 1 (February 2020): 1-13. https://doi.org/10.20290/estubtdb.522740.
EndNote Aslan AF (February 1, 2020) ÇAPRAZLANMIŞ MODÜLLERİN HOMOLOJİLERİ ÜZERİNE HESAPLAMALAR. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8 1 1–13.
IEEE A. F. Aslan, “ÇAPRAZLANMIŞ MODÜLLERİN HOMOLOJİLERİ ÜZERİNE HESAPLAMALAR”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, vol. 8, no. 1, pp. 1–13, 2020, doi: 10.20290/estubtdb.522740.
ISNAD Aslan, Ahmet Faruk. “ÇAPRAZLANMIŞ MODÜLLERİN HOMOLOJİLERİ ÜZERİNE HESAPLAMALAR”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8/1 (February 2020), 1-13. https://doi.org/10.20290/estubtdb.522740.
JAMA Aslan AF. ÇAPRAZLANMIŞ MODÜLLERİN HOMOLOJİLERİ ÜZERİNE HESAPLAMALAR. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2020;8:1–13.
MLA Aslan, Ahmet Faruk. “ÇAPRAZLANMIŞ MODÜLLERİN HOMOLOJİLERİ ÜZERİNE HESAPLAMALAR”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, vol. 8, no. 1, 2020, pp. 1-13, doi:10.20290/estubtdb.522740.
Vancouver Aslan AF. ÇAPRAZLANMIŞ MODÜLLERİN HOMOLOJİLERİ ÜZERİNE HESAPLAMALAR. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2020;8(1):1-13.