Research Article
BibTex RIS Cite

EFFECTS OF GENTAMICIN LOADED PCL NANOFIBERS TO CELL VIABILITY AND RELEASE RATE OF PLASMID DNA

Year 2020, Volume: 8 Issue: 2, 293 - 302, 31.08.2020
https://doi.org/10.20290/estubtdb.658998

Abstract

Polycaprolactone (PCL) nanofiber with constant plasmid DNA addition and with different concentration of gentamicin designed and studied for their effect on cell viability and release rate. PCL nanofibers were fabricated using electrospinning method with plasmid DNA and gentamicin addition. The plasmid DNA used in PCL nanofiber were extracted from E. coli. The scanning electron microscopy (SEM) images show that the nano-scale fiber structures have an average diameter of 113.9 nm. UV microplate reader confirmed the existence of plasmid DNA in the PCL nanofibers. Elisa reader study showed the addition of gentamicin in the fibers. Cell viability tests indicated that PCL nanofibers with 10% gentamicin on a fibroblast cell showed high cell viability, which is related to surface areas and pore size of the electrospun fibers besides to the interaction among gentamicin, plasmid DNA and electrospun fiber matrix.

References

  • [1] Ramakrishna S, Fujihara K., Teo W-E., Lim T-C., Ma Z. An introduction to electrospinning and nanofibers. World Scientific Publishing Co.; 2005:398.
  • [2] Doshi, J. D. Reneker. Electrospinning process and applications of electrospun fibers. Proceeding of IEEE-Industry Applications Society Annual Meeting 1993, Toronto, Canada :1698.
  • [3] Formhals A. Method and apparatus for the production of fibers. US2116942 A, Patents, 1938.
  • [4] Formhals A. Artificial thread and method of producing same. US2187306 A, Patents, 1940.
  • [5] Formhals A. Method and apparatus for the production of artificial fibers. US2158416 A, Patents, 1939.
  • [6] Taylor G. Electrically Driven Jets. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990) 1969; 313: 453-475.
  • [7] Baumgarten P. Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science 1971; 36(1): 71-79.
  • [8] Sill TJ, Von Recum HA.Electrospinning: Applications in drug delivery and tissueengineering. Biomaterials 2008; 29(13):1989-2006.
  • [9] Dietzel JM, Kleinmejer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001;42: 261-272.
  • [10] Huang C, Chen S, Lai C, Reneker Darrell H, Qiu H, Ye Y, Hou H. Electrospun polymer nanofibres with small diameters. Nanotechnology 2006; 17(6):1558–1563.
  • [11] Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygui RE, MacLellan WR. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 2008; 29(19): 2907-2914.
  • [12] Balguid A, Mol A, Marion MH, Bank RA, Bouten CVC, Baaijens FPT. Tailoring fiber diameter in electrospun poly (e-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Engineering; Part A 2008;14.
  • [13] Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26:2603-2610.
  • [14] Yoshimoto H, Shin YM, Terai Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003; 24(12): 2077-2082.
  • [15] Matthews JA, Wnek GE. Simpson DG, Bowlin G L. Electrospinning of collagen nanofibers, Biomacromolecules 2002; 3(2): 232–238.
  • [16] Li Y, Ceylan M, Shrestha B, Wang H, Lu RQ, Asmatulu R.,Yao L. Nanofibers Support Oligodendrocyte Precursor Cell Growth and Function as a Neuron-Free Model for Myelination Study. Biomacromolecules 2014; 15(1):319–326.
  • [17] McManus MC, Boland ED, Simpson DG, Barnes CP, Bowlin GL. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. Journal of Biomedical Materials Research Part A 2007;81(2):299-309.
  • [18] Nuraje N, Khan WS, Lei Y, Ceylan M, Asmatulu R. Superhydrophobic Electrospun Nanofibers. Journal of Materials Chemistry A 2012; 1:1929–1946.
  • [19] Asmatulu R, Ceylan M, Nuraje N. Study of Superhydrophobic Electrospun Nanocomposite Fibers for Energy Systems. Langmuir 2011; 27(2): 504–507.
  • [20] Orozco-Castellanos LM, Marcos-Fernandez A, Martínez-Richa A. Hydrolytic degradation of poly(ε-caprolactone) with different end groups and poly(ε-caprolactone-co-γ-butyrolactone). Characterization and kinetics of hydrocortisone delivery. Polymer for Advanced Technologies 2009 DOI:10.1002/pat.1531
  • [21] Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Frontiers in Bioscience 2004; 9:1422-1432.
  • [22] Ozdemir KG, Yilmaz H, Yilmaz S. In Vitro Evaluation of Cytotoxicity of Soft Lining Materials on L929 Cells by MTT Assay. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2009; 90 (1):82-86.
  • [23] Lanbeck P, Paulsen O. Short-term Effects of four Antibiotics on DNA Synthesis in Endothelial Cells. Pharmacology & Toxicology 2001; 88:204-208.

GENTAMICIN YÜKLENEN PCL NANOFİBERLERİNİN ÇEŞİTLİLİK HÜCRESİNE ETKİSİ VE PLAZMİD DNA ORANI

Year 2020, Volume: 8 Issue: 2, 293 - 302, 31.08.2020
https://doi.org/10.20290/estubtdb.658998

Abstract

Sabit plazmid DNA ilaveli ve farklı gentamisin konsantrasyonlu polikaprolakton (PCL) nano elyafı, hücre canlılığı ve salıverme hızı üzerindeki etkileri için tasarlanmış ve çalışılmıştır. PCL nano lifleri, plazmid DNA ve gentamisin ilavesiyle elektrospinning yöntemi kullanılarak imal edildi. PCL nanofiberinde kullanılan plazmid DNA, E. coli'den özümlendi. Taramalı elektron mikroskobu (SEM) görüntüleri nano ölçekli elyaf yapılarının ortalama 113.9 nm çapa sahip olduğunu göstermektedir. UV mikroplaka okuyucu, PCL nano fiberlerinde plazmid DNA'nın varlığını doğruladı. Elisa okuyucu çalışması liflere gentamisin eklendiğini gösterdi. Hücre canlılığı testleri, bir fibroblast hücresi üzerinde% 10 gentamisin içeren PCL nano elyaflarının, gentamisin, plazmid DNA ve elektrospun elyaf matrisi arasındaki etkileşimin yanı sıra, elektrospun liflerinin yüzey alanları ve gözenek büyüklüğü ile ilgili yüksek hücre canlılığı gösterdiğini göstermiştir.

References

  • [1] Ramakrishna S, Fujihara K., Teo W-E., Lim T-C., Ma Z. An introduction to electrospinning and nanofibers. World Scientific Publishing Co.; 2005:398.
  • [2] Doshi, J. D. Reneker. Electrospinning process and applications of electrospun fibers. Proceeding of IEEE-Industry Applications Society Annual Meeting 1993, Toronto, Canada :1698.
  • [3] Formhals A. Method and apparatus for the production of fibers. US2116942 A, Patents, 1938.
  • [4] Formhals A. Artificial thread and method of producing same. US2187306 A, Patents, 1940.
  • [5] Formhals A. Method and apparatus for the production of artificial fibers. US2158416 A, Patents, 1939.
  • [6] Taylor G. Electrically Driven Jets. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990) 1969; 313: 453-475.
  • [7] Baumgarten P. Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science 1971; 36(1): 71-79.
  • [8] Sill TJ, Von Recum HA.Electrospinning: Applications in drug delivery and tissueengineering. Biomaterials 2008; 29(13):1989-2006.
  • [9] Dietzel JM, Kleinmejer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001;42: 261-272.
  • [10] Huang C, Chen S, Lai C, Reneker Darrell H, Qiu H, Ye Y, Hou H. Electrospun polymer nanofibres with small diameters. Nanotechnology 2006; 17(6):1558–1563.
  • [11] Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygui RE, MacLellan WR. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 2008; 29(19): 2907-2914.
  • [12] Balguid A, Mol A, Marion MH, Bank RA, Bouten CVC, Baaijens FPT. Tailoring fiber diameter in electrospun poly (e-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Engineering; Part A 2008;14.
  • [13] Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26:2603-2610.
  • [14] Yoshimoto H, Shin YM, Terai Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003; 24(12): 2077-2082.
  • [15] Matthews JA, Wnek GE. Simpson DG, Bowlin G L. Electrospinning of collagen nanofibers, Biomacromolecules 2002; 3(2): 232–238.
  • [16] Li Y, Ceylan M, Shrestha B, Wang H, Lu RQ, Asmatulu R.,Yao L. Nanofibers Support Oligodendrocyte Precursor Cell Growth and Function as a Neuron-Free Model for Myelination Study. Biomacromolecules 2014; 15(1):319–326.
  • [17] McManus MC, Boland ED, Simpson DG, Barnes CP, Bowlin GL. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. Journal of Biomedical Materials Research Part A 2007;81(2):299-309.
  • [18] Nuraje N, Khan WS, Lei Y, Ceylan M, Asmatulu R. Superhydrophobic Electrospun Nanofibers. Journal of Materials Chemistry A 2012; 1:1929–1946.
  • [19] Asmatulu R, Ceylan M, Nuraje N. Study of Superhydrophobic Electrospun Nanocomposite Fibers for Energy Systems. Langmuir 2011; 27(2): 504–507.
  • [20] Orozco-Castellanos LM, Marcos-Fernandez A, Martínez-Richa A. Hydrolytic degradation of poly(ε-caprolactone) with different end groups and poly(ε-caprolactone-co-γ-butyrolactone). Characterization and kinetics of hydrocortisone delivery. Polymer for Advanced Technologies 2009 DOI:10.1002/pat.1531
  • [21] Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Frontiers in Bioscience 2004; 9:1422-1432.
  • [22] Ozdemir KG, Yilmaz H, Yilmaz S. In Vitro Evaluation of Cytotoxicity of Soft Lining Materials on L929 Cells by MTT Assay. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2009; 90 (1):82-86.
  • [23] Lanbeck P, Paulsen O. Short-term Effects of four Antibiotics on DNA Synthesis in Endothelial Cells. Pharmacology & Toxicology 2001; 88:204-208.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Muhammet Ceylan 0000-0001-6933-2917

Shang-you Yang This is me 0000-0002-8835-5302

Ramazan Asmatulu 0000-0001-8104-2285

Publication Date August 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Ceylan, M., Yang, S.-y., & Asmatulu, R. (2020). EFFECTS OF GENTAMICIN LOADED PCL NANOFIBERS TO CELL VIABILITY AND RELEASE RATE OF PLASMID DNA. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 8(2), 293-302. https://doi.org/10.20290/estubtdb.658998
AMA Ceylan M, Yang Sy, Asmatulu R. EFFECTS OF GENTAMICIN LOADED PCL NANOFIBERS TO CELL VIABILITY AND RELEASE RATE OF PLASMID DNA. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. August 2020;8(2):293-302. doi:10.20290/estubtdb.658998
Chicago Ceylan, Muhammet, Shang-you Yang, and Ramazan Asmatulu. “EFFECTS OF GENTAMICIN LOADED PCL NANOFIBERS TO CELL VIABILITY AND RELEASE RATE OF PLASMID DNA”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 8, no. 2 (August 2020): 293-302. https://doi.org/10.20290/estubtdb.658998.
EndNote Ceylan M, Yang S-y, Asmatulu R (August 1, 2020) EFFECTS OF GENTAMICIN LOADED PCL NANOFIBERS TO CELL VIABILITY AND RELEASE RATE OF PLASMID DNA. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8 2 293–302.
IEEE M. Ceylan, S.-y. Yang, and R. Asmatulu, “EFFECTS OF GENTAMICIN LOADED PCL NANOFIBERS TO CELL VIABILITY AND RELEASE RATE OF PLASMID DNA”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, vol. 8, no. 2, pp. 293–302, 2020, doi: 10.20290/estubtdb.658998.
ISNAD Ceylan, Muhammet et al. “EFFECTS OF GENTAMICIN LOADED PCL NANOFIBERS TO CELL VIABILITY AND RELEASE RATE OF PLASMID DNA”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8/2 (August 2020), 293-302. https://doi.org/10.20290/estubtdb.658998.
JAMA Ceylan M, Yang S-y, Asmatulu R. EFFECTS OF GENTAMICIN LOADED PCL NANOFIBERS TO CELL VIABILITY AND RELEASE RATE OF PLASMID DNA. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2020;8:293–302.
MLA Ceylan, Muhammet et al. “EFFECTS OF GENTAMICIN LOADED PCL NANOFIBERS TO CELL VIABILITY AND RELEASE RATE OF PLASMID DNA”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, vol. 8, no. 2, 2020, pp. 293-02, doi:10.20290/estubtdb.658998.
Vancouver Ceylan M, Yang S-y, Asmatulu R. EFFECTS OF GENTAMICIN LOADED PCL NANOFIBERS TO CELL VIABILITY AND RELEASE RATE OF PLASMID DNA. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2020;8(2):293-302.