Araştırma Makalesi
BibTex RIS Kaynak Göster

ISOMETRIC IMMERSIONS IN 3-DIMENSIONAL EUCLIDEAN SPACE

Yıl 2021, Cilt: 9 Sayı: 1, 20 - 24, 22.02.2021
https://doi.org/10.20290/estubtdb.648030

Öz

In this paper, we examine the image of geodesic curves of Riemann 2-manifolds under the isometric immersions, in three dimensional Euclidean space. We show that the curvature of these curves is equal to the normal curvature of the manifold in the direction of tangent vector field of the geodesics. Moreover, we prove that if the parameter curves of the manifold are the line of curvature, then the geodesic torsion of geodesics is equal to the torsion of the image curve.

Kaynakça

  • Ferus D, Schirrmacher S. Submanifolds in Euclidean space with simple geodesics. Math Ann 1982; 260: 57-62.
  • Ozturk E. Surfaces and submanifolds in Euclidean space with simple geodesics. MSc, Eskişehir Osmangazi University, Eskişehir, Turkey, 2012.
  • O’Neill B. Elementary Differential Geometry. 2nd ed. New York: Academic Press, 2006.
  • Sabuncuoglu A. Diferensiyel Geometri. Ankara: Nobel Yayın Dağıtım, 2006.

ISOMETRIC IMMERSIONS IN 3-DIMENSIONAL EUCLIDEAN SPACE

Yıl 2021, Cilt: 9 Sayı: 1, 20 - 24, 22.02.2021
https://doi.org/10.20290/estubtdb.648030

Öz

In
this paper, we examine the image of geodesic curves of Riemann 2-manifolds
under the isometric immersions, in three dimensional Euclidean space. We show
that the curvature of these curves is equal to the normal curvature of the manifold in the direction of
tangent vector field of the geodesics. Moreover, we prove that if the parameter
curves of the manifold are the line of curvature, then the geodesic torsion of geodesics
is equal to the torsion of the image curve. 

Kaynakça

  • Ferus D, Schirrmacher S. Submanifolds in Euclidean space with simple geodesics. Math Ann 1982; 260: 57-62.
  • Ozturk E. Surfaces and submanifolds in Euclidean space with simple geodesics. MSc, Eskişehir Osmangazi University, Eskişehir, Turkey, 2012.
  • O’Neill B. Elementary Differential Geometry. 2nd ed. New York: Academic Press, 2006.
  • Sabuncuoglu A. Diferensiyel Geometri. Ankara: Nobel Yayın Dağıtım, 2006.
Toplam 4 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Emre Öztürk 0000-0001-6638-3233

Yayımlanma Tarihi 22 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 1

Kaynak Göster

APA Öztürk, E. (2021). ISOMETRIC IMMERSIONS IN 3-DIMENSIONAL EUCLIDEAN SPACE. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 9(1), 20-24. https://doi.org/10.20290/estubtdb.648030
AMA Öztürk E. ISOMETRIC IMMERSIONS IN 3-DIMENSIONAL EUCLIDEAN SPACE. Estuscience - Theory. Şubat 2021;9(1):20-24. doi:10.20290/estubtdb.648030
Chicago Öztürk, Emre. “ISOMETRIC IMMERSIONS IN 3-DIMENSIONAL EUCLIDEAN SPACE”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 9, sy. 1 (Şubat 2021): 20-24. https://doi.org/10.20290/estubtdb.648030.
EndNote Öztürk E (01 Şubat 2021) ISOMETRIC IMMERSIONS IN 3-DIMENSIONAL EUCLIDEAN SPACE. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 9 1 20–24.
IEEE E. Öztürk, “ISOMETRIC IMMERSIONS IN 3-DIMENSIONAL EUCLIDEAN SPACE”, Estuscience - Theory, c. 9, sy. 1, ss. 20–24, 2021, doi: 10.20290/estubtdb.648030.
ISNAD Öztürk, Emre. “ISOMETRIC IMMERSIONS IN 3-DIMENSIONAL EUCLIDEAN SPACE”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 9/1 (Şubat 2021), 20-24. https://doi.org/10.20290/estubtdb.648030.
JAMA Öztürk E. ISOMETRIC IMMERSIONS IN 3-DIMENSIONAL EUCLIDEAN SPACE. Estuscience - Theory. 2021;9:20–24.
MLA Öztürk, Emre. “ISOMETRIC IMMERSIONS IN 3-DIMENSIONAL EUCLIDEAN SPACE”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 9, sy. 1, 2021, ss. 20-24, doi:10.20290/estubtdb.648030.
Vancouver Öztürk E. ISOMETRIC IMMERSIONS IN 3-DIMENSIONAL EUCLIDEAN SPACE. Estuscience - Theory. 2021;9(1):20-4.