Research Article
BibTex RIS Cite

EXOPOLYSACCHARIDE (EPS) ISOLATED FROM ENTEROCOCCUS FAECIUM D36 SHOWS ANTI-CANCER AND ANTI-INVASIVE ACTIVITY POTENTIAL VIA DOWN-REGULATION OF MUC5AC GENE ON HUMAN COLORECTAL ADENOCARCINOMA (CACO-2) CELLS

Year 2024, , 8 - 17, 30.01.2024
https://doi.org/10.18036/estubtdc.1265111

Abstract

To investigate the antiproliferative properties of exopolysaccharides (EPS) on human colorectal adenocarcinoma cell line (Caco-2) and the regulation of MUC5AC gene expression, the antiproliferative effect of EPS isolated from D36 strain was determined by MTT test and the regulation of MUC5AC gene expression was examined using Real-Time PCR. Enterococcus faecium D36 (E. faecium D36) were characterized by Ribotyping analysis. Some biochemical methodologies were preliminarily used to characterize the probiotic potential of E. faecium D36, including morphological, cultural, and physiological characteristics. EPS isolated from E. faecium D36 strain has an antiproliferative effect on Caco-2 cell line, and mucin gene (MUC5AC) expression levels decreased. These results suggest that EPS isolated from E. faecium D36 strain might be a source for a novel anticancer agent. Based on our results, it is believed that EPS obtained from E. faecium D36 can be used as a protective and therapeutic substance during the early stages of cancer, especially colon cancer. EPS affects colon cancer by reducing the invasion ability of cancer by decreasing MUC5AC expression. These findings are thought to shed light on future in vivo studies.

Project Number

1201F014

References

  • [1] Welman AD. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 2003; Jun 269-274.
  • [2] Li L, Jiang YJ, Yang XY, Liu Y, Wang JY, Man CX. Immunoregulatory effects on caco-2 cells and mice of exopolysaccharides isolated from Lactobacillus acidophilus NCFM. Food Funct. 2014;5, 3261 -3268.
  • [3] Lollo PCB, Moura S, Morato PN, Cruz AG, Castro FW, Betim CB, Nisishima L, Faria JAF, Junior MM, Fernandes CO, Amaya-Farfan J. Probiotic yogurt offers higher immune protection than probiotic whey beverage. Food Res. Int. 2013;54, 118–124.
  • [4] Wang K, Li W, Rui X, Chen X, Jiang M., & Dong M. Structural characterization and bioactivity of released exopolysaccharides from Lactobacillus plantarum 70810. Int. J. Biol. Macromol. 2014; 67, 71-78.
  • [5] Rafter J, Bennett M, Caderni G, Clune Y, Hughes R, Karlsson PC, Klinder A, O’Riordan M. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr. 2007;85, 488-496.
  • [6] McIntosh GH, Le Leu RK. The influence of dietary proteins on colon cancer risk. Nutr. Res. 2001;21, 1053–1066.
  • [7] Rafter J. Probiotics and colon cancer. Best Pract. Res. Clin. Gastroenterol. 2003; Vol. 17, No. 5, pp. 849–859.
  • [8] Nami Y, Abdullah N, Haghsheneas B, Radiah D, Rosli R, Yari Khosroushahi A. A newly isolated probiotic Enterococcus faecalis strain from vagina microbiota enhances apoptosis of human cancer cells. J. Appl. Microbiol. 2014;1364-5072
  • [9] Devriese LA, Van de Kerckhove A, Kilpper-balz IR, Schleifer KH. Schleifer characterization and identification of enterococcus species isolated from the intestines of animals. Int. J. Syst. Bacteriol. 1987;37,257-259.
  • [10] Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH. Enterocci in foods-a connundrum for food safety. Int. J. Food. Microbiol. 2003;88, 105-122.
  • [11] Foulquie Moreno MR., Sarantinopoulos P, Tsakalidou E, De Vuyst L. The role and application of enterococci in food and health. Int J. Food Microbiol. 2006;88, 105-122
  • [12] Rafter J. Lactic acid bacteria and cancer: mechanistic perspective. Br. J. Nutr. 2002;88, 89-94.
  • [13] Ljungh A & Wadström T. Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol. 2006;7(2) 73-90.
  • [14] Varki A, Kannagi R, Toole BP. Glycosylation Changes in Cancer, Essentials of Glycobiology, Chapter 44, 2nd edition, 2009; Cold Spring Harbor Press.
  • [15] Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol. 2015;10:473–510
  • [16] Venkitachalam S & Guda K. Altered glycosyltransferases in colorectal cancer. Expert Rev Gastroenterol Hepatol. 2017;11:1, 5-7, DOI: 10.1080/17474124.2017.1253474
  • [17] Suzaki I, Kawano S, Komiya K, Tanabe T, Akaba T, Asano K, ... & Rubin BK. Inhibition of IL‐13‐induced periostin in airway epithelium attenuates cellular protein expression of MUC5AC. Respirology. 2017; 22(1), 93-100.
  • [18] Bae CH, Jeon BS, Choi YS, Song SY, Kim YD. Delphinidin Inhibits LPS-Induced MUC8 and MUC5B Expression Through Toll-like Receptor 4-Mediated ERK1/2 and p38 MAPK in Human Airway Epithelial Cells. Clin. Exp. Otorhinolaryngol. 2014; Vol. 7, No. 3: 198-204
  • [19] Chugh S, Gnanapragassam VS, Jain M, Rachagani S, Ponnusamy MP, Batra SK. Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochimica et Biophysica Acta. 1856, 2015; 211–225
  • [20] Ringel J & Löhr M. The MUC gene family: Their role in diagnosis and early detection of pancreatic cancer. Mol cancer. 2003;2(1), 1-5.
  • [21] Bu XD, Li N, Tian XO, Huang PL. Caco-2 and LS174T cell lines provide different models for studying mucin expression in colon cancer. Tissue and Cell. 2011;43, 201–206.
  • [22] Porter GA, Urquhart R, Bu J, Johnson P, Grunfeld E. The impact of audit and feedback on nodal harvest in colorectal cancer. BMC Cancer. 2011; Jan3;11:2 doi: 10.1186/1471-2407-11-2.
  • [23] Pothuraju R, Rachagani S, Krishnan SR, Chaudhary S, Nimmakayala RK, Siddiqui JA, & Batra SK. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol. Cancer. 2020; 19(1), 1-14.
  • [24] Schillinger U & Lücke FK. Antibacterial activity of Lactobacillus sake isolated from meat Appl. Environ. Microbiol. 1989;55:1901-1906.
  • [25] Stiles ME, & Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997;Apr 29;36(1):1-29.
  • [26] Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J & Templeton D. Determination of sugars, by products, and degradation products in liquid fraction process samples. NREL, Golden, CO. 2006.
  • [27] Mossman T. Rapid Colorimetric Assay For Cellular Growth And Survival: Application To Proliferation And Cytotoxicity Assays. J. Immunol. Methods. 1983; 65:55–63.
  • [28] Meulen RV, Grosu-Tudor S, Mozzi F, Vaningelgem F, Zamfir M., Valdez GF, Vuyst L. Screening of Lactic Acid Isolates From Dairy And Cereal Products For Exopolysaccharide Production And Genes Involved. Int. J. Food Microbiol. 2007;118, 250–258.
  • [29] Lin TY & Chien MF. Exopolysaccharides Production as Affected by Lactic Acid Bacteria and Fermentation Time. Food Chem. 2007;100, 1419-1423.
  • [30] Banwo K, Sanni A, Tan H. Technological Properties and Probiotics Potential of Enterococcus faecium Strains Isolated from Cow Milk. J. Appl. Microbiol. 2012;114, 229-241
  • [31] Kayser FH. Safety Aspects of Enterococci From the Medical Point of View. Int J Food Microbiol. 2003;88, 255–262.
  • [32] Li M, Song L, Qin X. Glycan Changes: Cancer Metastasis and Anticancer Vaccines. J. Biosci. 2010;35665–673.
  • [33] Kufe DW. Mucins in Cancer: Function, Prognosis and Therapy. Nat. Rev. Cancer. 2009; Dec;9(12):874-85.
  • [34] Dallal MM.S, Mojarrad M, Baghbani F, Raoofin R, Mardaneh J, Salehipour Z. Effetcs of Probiotic Lactobacillus acidophilus and Lactobacillus casei on Colorectal Tumor Cells Activity (Caco-2). Arch. Iran. Med. 2015;18(3), 167-172
  • [35] Burns AJ & Rowland IR. Anti-Carcinogenicity of Probiotics and Prebiotics. Curr Issues Intest Microbiol. 2000;1(1). 13-24.
  • [36] O’Connell JB, Maggard MA, Ko CY. Colon Cancer Survival Rates with the New American Joint Committee on Cancer, Sixth Edition Staging. J. Natl. Cancer. Inst. 2004; Vol. 96, No. 19.
  • [37] Roig AI, Wright WE, Shay JW. Is Telomerase a Novel Target for Metastatic Colon Cancer?. Curr. Colorectal Cancer Rep. 2009;5, 203–208

ENTEROCOCCUS FAECIUM D36'DAN İZOLE EDİLEN EKZOPOLİSAKKARİTİN (EPS), İNSAN KOLOREKTAL ADENOKARSİNOM (CACO-2) HÜCRELERİNDE MUC5AC GENİNİN REGÜLASYONU İLE ANTİ-KANSER VE ANTİ-İNVAZIV AKTİVİTESİ

Year 2024, , 8 - 17, 30.01.2024
https://doi.org/10.18036/estubtdc.1265111

Abstract

Ekzopolisakkaritlerin (EPS) insan kolorektal adenokarsinom hücre hattı (Caco-2) üzerindeki antiproliferatif özelliklerini ve MUC5AC gen ekspresyonunun düzenlenmesini araştırmak için, D36 suşundan izole edilen EPS'nin antiproliferatif etkisi MTT testi ile belirlenmiş ve MUC5AC gen ekspresyonunun düzenlenmesi Real-Time PCR kullanılarak incelenmiştir. Enterococcus faecium D36 (E. faecium D36) Ribotipleme analizi ile karakterize edilmiştir. E. faecium D36'nın probiyotik potansiyelini karakterize etmek için morfolojik, kültürel ve fizyolojik özellikler de dahil olmak üzere bazı biyokimyasal metodolojiler ön hazırlık olarak kullanılmıştır. E. faecium D36 suşundan izole edilen EPS, Caco-2 hücre hattı üzerinde antiproliferatif bir etkiye sahiptir ve MUC5AC gen ekspresyon seviyeleri azalmıştır. Bu sonuçlar, E. faecium D36 suşundan izole edilen EPS'nin yeni bir antikanser ajan için bir kaynak olabileceğini göstermektedir. Sonuçlarımıza dayanarak, E. faecium D36'dan elde edilen EPS'nin kanserin, özellikle de kolon kanserinin erken evrelerinde koruyucu ve tedavi edici bir madde olarak kullanılabileceğine inanılmaktadır. EPS, müsin geni (MUC5AC) ekspresyonunu azaltarak kanserin invazyon yeteneğini azaltarak kolon kanserini etkilemektedir. Bu bulguların gelecekte yapılacak in vivo çalışmalara ışık tutacağı düşünülmektedir

Supporting Institution

Anadolu Üniversitesi

Project Number

1201F014

Thanks

Tez çalışmalarıma mali destek sağlayan Eskişehir Teknik Üniversitesi ve Anadolu Üniversitesi Rektörlüğü’ne ve Bilimsel Araştırma Projeleri Koordinasyon Birimine teşekkürlerimi sunarım.

References

  • [1] Welman AD. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 2003; Jun 269-274.
  • [2] Li L, Jiang YJ, Yang XY, Liu Y, Wang JY, Man CX. Immunoregulatory effects on caco-2 cells and mice of exopolysaccharides isolated from Lactobacillus acidophilus NCFM. Food Funct. 2014;5, 3261 -3268.
  • [3] Lollo PCB, Moura S, Morato PN, Cruz AG, Castro FW, Betim CB, Nisishima L, Faria JAF, Junior MM, Fernandes CO, Amaya-Farfan J. Probiotic yogurt offers higher immune protection than probiotic whey beverage. Food Res. Int. 2013;54, 118–124.
  • [4] Wang K, Li W, Rui X, Chen X, Jiang M., & Dong M. Structural characterization and bioactivity of released exopolysaccharides from Lactobacillus plantarum 70810. Int. J. Biol. Macromol. 2014; 67, 71-78.
  • [5] Rafter J, Bennett M, Caderni G, Clune Y, Hughes R, Karlsson PC, Klinder A, O’Riordan M. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr. 2007;85, 488-496.
  • [6] McIntosh GH, Le Leu RK. The influence of dietary proteins on colon cancer risk. Nutr. Res. 2001;21, 1053–1066.
  • [7] Rafter J. Probiotics and colon cancer. Best Pract. Res. Clin. Gastroenterol. 2003; Vol. 17, No. 5, pp. 849–859.
  • [8] Nami Y, Abdullah N, Haghsheneas B, Radiah D, Rosli R, Yari Khosroushahi A. A newly isolated probiotic Enterococcus faecalis strain from vagina microbiota enhances apoptosis of human cancer cells. J. Appl. Microbiol. 2014;1364-5072
  • [9] Devriese LA, Van de Kerckhove A, Kilpper-balz IR, Schleifer KH. Schleifer characterization and identification of enterococcus species isolated from the intestines of animals. Int. J. Syst. Bacteriol. 1987;37,257-259.
  • [10] Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH. Enterocci in foods-a connundrum for food safety. Int. J. Food. Microbiol. 2003;88, 105-122.
  • [11] Foulquie Moreno MR., Sarantinopoulos P, Tsakalidou E, De Vuyst L. The role and application of enterococci in food and health. Int J. Food Microbiol. 2006;88, 105-122
  • [12] Rafter J. Lactic acid bacteria and cancer: mechanistic perspective. Br. J. Nutr. 2002;88, 89-94.
  • [13] Ljungh A & Wadström T. Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol. 2006;7(2) 73-90.
  • [14] Varki A, Kannagi R, Toole BP. Glycosylation Changes in Cancer, Essentials of Glycobiology, Chapter 44, 2nd edition, 2009; Cold Spring Harbor Press.
  • [15] Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol. 2015;10:473–510
  • [16] Venkitachalam S & Guda K. Altered glycosyltransferases in colorectal cancer. Expert Rev Gastroenterol Hepatol. 2017;11:1, 5-7, DOI: 10.1080/17474124.2017.1253474
  • [17] Suzaki I, Kawano S, Komiya K, Tanabe T, Akaba T, Asano K, ... & Rubin BK. Inhibition of IL‐13‐induced periostin in airway epithelium attenuates cellular protein expression of MUC5AC. Respirology. 2017; 22(1), 93-100.
  • [18] Bae CH, Jeon BS, Choi YS, Song SY, Kim YD. Delphinidin Inhibits LPS-Induced MUC8 and MUC5B Expression Through Toll-like Receptor 4-Mediated ERK1/2 and p38 MAPK in Human Airway Epithelial Cells. Clin. Exp. Otorhinolaryngol. 2014; Vol. 7, No. 3: 198-204
  • [19] Chugh S, Gnanapragassam VS, Jain M, Rachagani S, Ponnusamy MP, Batra SK. Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochimica et Biophysica Acta. 1856, 2015; 211–225
  • [20] Ringel J & Löhr M. The MUC gene family: Their role in diagnosis and early detection of pancreatic cancer. Mol cancer. 2003;2(1), 1-5.
  • [21] Bu XD, Li N, Tian XO, Huang PL. Caco-2 and LS174T cell lines provide different models for studying mucin expression in colon cancer. Tissue and Cell. 2011;43, 201–206.
  • [22] Porter GA, Urquhart R, Bu J, Johnson P, Grunfeld E. The impact of audit and feedback on nodal harvest in colorectal cancer. BMC Cancer. 2011; Jan3;11:2 doi: 10.1186/1471-2407-11-2.
  • [23] Pothuraju R, Rachagani S, Krishnan SR, Chaudhary S, Nimmakayala RK, Siddiqui JA, & Batra SK. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol. Cancer. 2020; 19(1), 1-14.
  • [24] Schillinger U & Lücke FK. Antibacterial activity of Lactobacillus sake isolated from meat Appl. Environ. Microbiol. 1989;55:1901-1906.
  • [25] Stiles ME, & Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997;Apr 29;36(1):1-29.
  • [26] Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J & Templeton D. Determination of sugars, by products, and degradation products in liquid fraction process samples. NREL, Golden, CO. 2006.
  • [27] Mossman T. Rapid Colorimetric Assay For Cellular Growth And Survival: Application To Proliferation And Cytotoxicity Assays. J. Immunol. Methods. 1983; 65:55–63.
  • [28] Meulen RV, Grosu-Tudor S, Mozzi F, Vaningelgem F, Zamfir M., Valdez GF, Vuyst L. Screening of Lactic Acid Isolates From Dairy And Cereal Products For Exopolysaccharide Production And Genes Involved. Int. J. Food Microbiol. 2007;118, 250–258.
  • [29] Lin TY & Chien MF. Exopolysaccharides Production as Affected by Lactic Acid Bacteria and Fermentation Time. Food Chem. 2007;100, 1419-1423.
  • [30] Banwo K, Sanni A, Tan H. Technological Properties and Probiotics Potential of Enterococcus faecium Strains Isolated from Cow Milk. J. Appl. Microbiol. 2012;114, 229-241
  • [31] Kayser FH. Safety Aspects of Enterococci From the Medical Point of View. Int J Food Microbiol. 2003;88, 255–262.
  • [32] Li M, Song L, Qin X. Glycan Changes: Cancer Metastasis and Anticancer Vaccines. J. Biosci. 2010;35665–673.
  • [33] Kufe DW. Mucins in Cancer: Function, Prognosis and Therapy. Nat. Rev. Cancer. 2009; Dec;9(12):874-85.
  • [34] Dallal MM.S, Mojarrad M, Baghbani F, Raoofin R, Mardaneh J, Salehipour Z. Effetcs of Probiotic Lactobacillus acidophilus and Lactobacillus casei on Colorectal Tumor Cells Activity (Caco-2). Arch. Iran. Med. 2015;18(3), 167-172
  • [35] Burns AJ & Rowland IR. Anti-Carcinogenicity of Probiotics and Prebiotics. Curr Issues Intest Microbiol. 2000;1(1). 13-24.
  • [36] O’Connell JB, Maggard MA, Ko CY. Colon Cancer Survival Rates with the New American Joint Committee on Cancer, Sixth Edition Staging. J. Natl. Cancer. Inst. 2004; Vol. 96, No. 19.
  • [37] Roig AI, Wright WE, Shay JW. Is Telomerase a Novel Target for Metastatic Colon Cancer?. Curr. Colorectal Cancer Rep. 2009;5, 203–208
There are 37 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Burcugül Altuğ Tasa 0000-0003-4460-8467

Merih Kıvanç 0000-0002-8647-3428

Ayşe Tansu Koparal 0000-0001-8201-6708

Project Number 1201F014
Publication Date January 30, 2024
Published in Issue Year 2024

Cite

APA Altuğ Tasa, B., Kıvanç, M., & Koparal, A. T. (2024). EXOPOLYSACCHARIDE (EPS) ISOLATED FROM ENTEROCOCCUS FAECIUM D36 SHOWS ANTI-CANCER AND ANTI-INVASIVE ACTIVITY POTENTIAL VIA DOWN-REGULATION OF MUC5AC GENE ON HUMAN COLORECTAL ADENOCARCINOMA (CACO-2) CELLS. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 13(1), 8-17. https://doi.org/10.18036/estubtdc.1265111
AMA Altuğ Tasa B, Kıvanç M, Koparal AT. EXOPOLYSACCHARIDE (EPS) ISOLATED FROM ENTEROCOCCUS FAECIUM D36 SHOWS ANTI-CANCER AND ANTI-INVASIVE ACTIVITY POTENTIAL VIA DOWN-REGULATION OF MUC5AC GENE ON HUMAN COLORECTAL ADENOCARCINOMA (CACO-2) CELLS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. January 2024;13(1):8-17. doi:10.18036/estubtdc.1265111
Chicago Altuğ Tasa, Burcugül, Merih Kıvanç, and Ayşe Tansu Koparal. “EXOPOLYSACCHARIDE (EPS) ISOLATED FROM ENTEROCOCCUS FAECIUM D36 SHOWS ANTI-CANCER AND ANTI-INVASIVE ACTIVITY POTENTIAL VIA DOWN-REGULATION OF MUC5AC GENE ON HUMAN COLORECTAL ADENOCARCINOMA (CACO-2) CELLS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 13, no. 1 (January 2024): 8-17. https://doi.org/10.18036/estubtdc.1265111.
EndNote Altuğ Tasa B, Kıvanç M, Koparal AT (January 1, 2024) EXOPOLYSACCHARIDE (EPS) ISOLATED FROM ENTEROCOCCUS FAECIUM D36 SHOWS ANTI-CANCER AND ANTI-INVASIVE ACTIVITY POTENTIAL VIA DOWN-REGULATION OF MUC5AC GENE ON HUMAN COLORECTAL ADENOCARCINOMA (CACO-2) CELLS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 13 1 8–17.
IEEE B. Altuğ Tasa, M. Kıvanç, and A. T. Koparal, “EXOPOLYSACCHARIDE (EPS) ISOLATED FROM ENTEROCOCCUS FAECIUM D36 SHOWS ANTI-CANCER AND ANTI-INVASIVE ACTIVITY POTENTIAL VIA DOWN-REGULATION OF MUC5AC GENE ON HUMAN COLORECTAL ADENOCARCINOMA (CACO-2) CELLS”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 13, no. 1, pp. 8–17, 2024, doi: 10.18036/estubtdc.1265111.
ISNAD Altuğ Tasa, Burcugül et al. “EXOPOLYSACCHARIDE (EPS) ISOLATED FROM ENTEROCOCCUS FAECIUM D36 SHOWS ANTI-CANCER AND ANTI-INVASIVE ACTIVITY POTENTIAL VIA DOWN-REGULATION OF MUC5AC GENE ON HUMAN COLORECTAL ADENOCARCINOMA (CACO-2) CELLS”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji 13/1 (January 2024), 8-17. https://doi.org/10.18036/estubtdc.1265111.
JAMA Altuğ Tasa B, Kıvanç M, Koparal AT. EXOPOLYSACCHARIDE (EPS) ISOLATED FROM ENTEROCOCCUS FAECIUM D36 SHOWS ANTI-CANCER AND ANTI-INVASIVE ACTIVITY POTENTIAL VIA DOWN-REGULATION OF MUC5AC GENE ON HUMAN COLORECTAL ADENOCARCINOMA (CACO-2) CELLS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2024;13:8–17.
MLA Altuğ Tasa, Burcugül et al. “EXOPOLYSACCHARIDE (EPS) ISOLATED FROM ENTEROCOCCUS FAECIUM D36 SHOWS ANTI-CANCER AND ANTI-INVASIVE ACTIVITY POTENTIAL VIA DOWN-REGULATION OF MUC5AC GENE ON HUMAN COLORECTAL ADENOCARCINOMA (CACO-2) CELLS”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, vol. 13, no. 1, 2024, pp. 8-17, doi:10.18036/estubtdc.1265111.
Vancouver Altuğ Tasa B, Kıvanç M, Koparal AT. EXOPOLYSACCHARIDE (EPS) ISOLATED FROM ENTEROCOCCUS FAECIUM D36 SHOWS ANTI-CANCER AND ANTI-INVASIVE ACTIVITY POTENTIAL VIA DOWN-REGULATION OF MUC5AC GENE ON HUMAN COLORECTAL ADENOCARCINOMA (CACO-2) CELLS. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji. 2024;13(1):8-17.