Research Article
BibTex RIS Cite

EXERCISE-INDUCED HYPOXEMIA IN AEROBIC AND ANAEROBIC TRAINED YOUNG FEMALE ATHLETES

Year 2019, Volume: 28 Issue: 3, 129 - 134, 30.12.2019
https://doi.org/10.34108/eujhs.510970

Abstract

The purpose of this study was to examine and compare
the occurrence of exercise-induced arterial hypoxemia (EIAH) in aerobic and
anaerobic trained young female athletes during a maximal exercise test.
International
level young female skiers including eight cross-country skiers (17±1.4 years)
and seven alpine skiers (16.1±1.2 years) took part in the study. Maximal oxygen
uptake (VO2max: ml/kg/min) was determined using an incremental
treadmill exercise test. Oxyhemoglobin saturation (SaO2
%) was continuously measured using a Pulse oximetry at
rest and during the test. EIAH was assumed to have developed when SaO2
decreased by at least 4% (ΔSaO2≤ −4%) from the baseline values. VO2max,
maximal minute ventilation (L/min), maximal running speed, test duration and
maximal heart rate values were higher in the cross-country skiers than in the
alpine skiers (p< 0.05). All the
athletes in both groups exhibited EIAH. SaO2 was significantly
decreased from 97.7±1.3% at rest to 87±3.4% at exhaustion in alpine skiers and
from 98.1±0.3% at rest to 88±2.8% at exhaustion in cross-country skiers (p< 0.01). It has been found that
there is no statistically significant difference between the resting and lowest
SaO2% values of the two groups (p>
0.05). It was determined that arterial hypoxemia occurred during exercise in
anaerobic and aerobic trained athletes. Well-trained young female athletes who
have different aerobic fitness levels may exhibit similar EIAH during the
incremental maximal exercise.

References

  • Richards JC, McKenzie DC, Warburton DE, et al. Prevalence of Exercise-Induced Arterial Hypoxemia in Healthy Women. Med Sci Sports Exerc 2004; 36:1514-21.
  • Powers SK, Lawler J, Dempsey JA, et al. Effects of incomplete pulmonary gas exchange on VO2max. J Appl Physiol 1989; 66:2491-5.
  • Rowell LB, Taylor HL, Wang Y, et al. Saturation of arterial blood with oxygen during maximal exercise. J Appl Physiol 1964; 19:284-286.
  • Dempsey JA, Wagner PD. Exercise induced arterial hypoxemia. J Appl Physiol 1999; 87:1997-2006.
  • Romer LM, Haverkamp HC, Lovering AT, et al. Effect of exercise-induced arterial hypoxemia on quadriceps muscle fatigue in healthy humans. Am J Physiol Regul Integr Comp Physiol 2006; 290:365-375.
  • Harms CA, McClaran SR, Nickele GA, et al. Effect of exercise-induced arterial O2 desaturation on VO2max in women. Med Sci Sports Exerc 2000; 32:1101-8.
  • Guenette JA, Sheel AW. Exercise-induced arterial hypoxaemia in active young women. Appl Physiol Nutr Metab 2007; 32:1263-73.
  • Hopkins SR, McKenzie DC, Schoene RB, et al. Pulmonary gas exchange during exercise in athletes. I. Ventilation-perfusion mismatch and diffusion limitation. J Appl Physiol 1994; 77:912-917.
  • Miyachi M, Katayama K. Effects of maximal interval training on arterial oxygen desaturation and ventilation during heavy exercise. Jpn J Physiol 1999; 49:401-407.
  • Powers SK, Dodd S, Lawler J, et al. Incidence of exercise induced hypoxemia in elite endurance athletes at sea level. Eur J Appl Physiol Occup Physiol 1988; 58:298-302.
  • Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 1984; 355:161-175.
  • Dominelli PB, Foster GE, Dominelli GS, et al. Exercise-induced arterial hypoxaemia and the mechanics of breathing in healthy young women. J Physiol 2013; 591:3017-3034.
  • Aaron EA, Seow KC, Johnson BD, et al. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol 1992; 72:1818-1825.
  • Walls J, Maskrey M, Wood-Baker R, et al. Exercise-induced oxyhaemoglobin desaturation, ventilatory limitation and lung diffusing capacity in women during and after exercise. Eur J Appl Physiol 2002; 87:145-152.
  • Alis R, Sanchis-Gomar F, Ferioli D, et al. Exercise Effects on Erythrocyte Deformability in Exercise-induced Arterial Hypoxemia. Int J Sports Med 2015; 36:286-91.
  • Rice AJ, Scroop GC, Gore CJ, et al. Exerciseinduced hypoxaemia in highly trained cyclists at 40% peak oxygen uptake. Eur J Appl Physiol Occup Physiol 1999; 79:353-359.
  • Korkmaz Eryılmaz S, Polat M. Exercise-induced arterial hypoxemia in aerobic and anaerobic trained athletes during incremental exercise. Physical education of students 2018; 22:99-103.
  • Thalheimer W, Cook S. How to calculate effect sizes from published research articles: A simplified methodology. 2002. [cited 2016 January 11]. Available from: http://work learning. com/effect_sizes.htm.
  • Docherty D, Sporer BA. A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Med 2000; 30:385-94.
  • Holmberg HC. The elite cross-country skier provides unique insights into human exercise physiology. Scand J Med Sci Sports 2015; 25:100-9.
  • White AT, Johnson SC. Physiological comparison of international, national and regional alpine skiers. Int J Sports Med 1991; 12:374-378.
  • Martin D, Powers S, Cicale M, et al. Validity of pulse oximetry during exercise in elite endurance athletes. J Appl Physiol 1992; 72:455-8.
  • Mollard P, Bourdillon N, Letournel M, et al. Validity of arterialized earlobe blood gases at rest and exercise in normoxia and hypoxia. Respir Physiol Neurobiol 2010; 172:179-183.
  • Powers SK, Dodd S, Woodyard J, et al. Haemoglobin saturation during incremental arm and leg exercise. Br J Sports Med 1984; 18:212-16.
  • Harms CA, McClaran SR, Nickele GA, et al. Exercise-induced arterial hypoxaemia in healthy young women. J Physiol 1998; 507(2): 619-628.
  • Schwartz J, Katz SA, Fegley RW, et al. Sex and race differences in the development of lung function. Am Rev Respir Dis 1988; 138:1415-1421.
  • McClaran SR, Harms CA, Pegelow DF et al. Smaller lungs in women affect exercise hyperpnea. J Appl Physiol 1998; 84:1872-1881.

AEROBİK VE ANAEROBİK ANTRENMANLI GENÇ KADIN SPORCULARDA EGZERSİZLE OLUŞAN HİPOKSEMİ

Year 2019, Volume: 28 Issue: 3, 129 - 134, 30.12.2019
https://doi.org/10.34108/eujhs.510970

Abstract

Bu
çalışma ile, aerobik ve anaerobik antrenmanlar yapan genç kadın sporcularda maksimal
egzersiz sırasında egzersizle oluşan arteriyel hipoksemi (EOAH) düzeylerini
tespit amaçlandı. Araştırmaya, uluslararası düzeyde yarışmalara katılan sekiz
genç kadın kros kayakçısı (17±1.4 yaş) ve yedi genç kadın alp kayakçısı (16.1±1.2
yaş) katıldı. Maksimal oksijen alımı (VO2max: ml/kg/dak) koşu
bandında şiddeti giderek artan egzersiz protokolü uygulanarak tespit
edilmiştir. Oksijen saturasyonu (%SaO2) istirahatte ve test
süresince sürekli olarak Pulse oksimetre kullanılarak ölçülmüştür. EOAH, SaO2’nin
istirahat düzeyinden en az % 4 (ΔSaO2≤–%4) azalması şeklinde tanımlanmıştır. Kros
kayakçılarının VO2max, maksimal dakika ventilasyonu (L/dak),
maksimal koşu hızı, test süresi ve maksimal kalp atım hızı değerleri alp
kayakçılarına göre yüksek düzeyde anlamlı bulundu (p< 0.05). Her iki gruptaki tüm sporcularda EOAH görüldü. SaO2
değerlerinin Alp kayakçılarında % 97.7±1.3 dinlenim düzeyinden % 87±3.4’e
düştüğü, kros kayakçıların ise % 98.1±0.3 dinlenim düzeyinden % 88±2.8’e
düştüğü tespit edildi (p< 0.01).
İki grubun dinlenim ve en düşük % SaO2 değerleri arasında anlamlı
fark olmadığı tespit edildi (p>
0.05). Anaerobik ve aerobik antrenmanlar yapan sporcularda egzersiz sırasında
arteriyel hipoksemi ortaya çıktığı tespit edildi. Bu çalışmanın sonuçları

farklı
aerobik uygunluk düzeylerine sahip iyi antrenmanlı genç kadın sporcuların,
maksimal egzersiz sırasında benzer EOAH sergileyebileceğini göstermiştir.

References

  • Richards JC, McKenzie DC, Warburton DE, et al. Prevalence of Exercise-Induced Arterial Hypoxemia in Healthy Women. Med Sci Sports Exerc 2004; 36:1514-21.
  • Powers SK, Lawler J, Dempsey JA, et al. Effects of incomplete pulmonary gas exchange on VO2max. J Appl Physiol 1989; 66:2491-5.
  • Rowell LB, Taylor HL, Wang Y, et al. Saturation of arterial blood with oxygen during maximal exercise. J Appl Physiol 1964; 19:284-286.
  • Dempsey JA, Wagner PD. Exercise induced arterial hypoxemia. J Appl Physiol 1999; 87:1997-2006.
  • Romer LM, Haverkamp HC, Lovering AT, et al. Effect of exercise-induced arterial hypoxemia on quadriceps muscle fatigue in healthy humans. Am J Physiol Regul Integr Comp Physiol 2006; 290:365-375.
  • Harms CA, McClaran SR, Nickele GA, et al. Effect of exercise-induced arterial O2 desaturation on VO2max in women. Med Sci Sports Exerc 2000; 32:1101-8.
  • Guenette JA, Sheel AW. Exercise-induced arterial hypoxaemia in active young women. Appl Physiol Nutr Metab 2007; 32:1263-73.
  • Hopkins SR, McKenzie DC, Schoene RB, et al. Pulmonary gas exchange during exercise in athletes. I. Ventilation-perfusion mismatch and diffusion limitation. J Appl Physiol 1994; 77:912-917.
  • Miyachi M, Katayama K. Effects of maximal interval training on arterial oxygen desaturation and ventilation during heavy exercise. Jpn J Physiol 1999; 49:401-407.
  • Powers SK, Dodd S, Lawler J, et al. Incidence of exercise induced hypoxemia in elite endurance athletes at sea level. Eur J Appl Physiol Occup Physiol 1988; 58:298-302.
  • Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 1984; 355:161-175.
  • Dominelli PB, Foster GE, Dominelli GS, et al. Exercise-induced arterial hypoxaemia and the mechanics of breathing in healthy young women. J Physiol 2013; 591:3017-3034.
  • Aaron EA, Seow KC, Johnson BD, et al. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol 1992; 72:1818-1825.
  • Walls J, Maskrey M, Wood-Baker R, et al. Exercise-induced oxyhaemoglobin desaturation, ventilatory limitation and lung diffusing capacity in women during and after exercise. Eur J Appl Physiol 2002; 87:145-152.
  • Alis R, Sanchis-Gomar F, Ferioli D, et al. Exercise Effects on Erythrocyte Deformability in Exercise-induced Arterial Hypoxemia. Int J Sports Med 2015; 36:286-91.
  • Rice AJ, Scroop GC, Gore CJ, et al. Exerciseinduced hypoxaemia in highly trained cyclists at 40% peak oxygen uptake. Eur J Appl Physiol Occup Physiol 1999; 79:353-359.
  • Korkmaz Eryılmaz S, Polat M. Exercise-induced arterial hypoxemia in aerobic and anaerobic trained athletes during incremental exercise. Physical education of students 2018; 22:99-103.
  • Thalheimer W, Cook S. How to calculate effect sizes from published research articles: A simplified methodology. 2002. [cited 2016 January 11]. Available from: http://work learning. com/effect_sizes.htm.
  • Docherty D, Sporer BA. A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Med 2000; 30:385-94.
  • Holmberg HC. The elite cross-country skier provides unique insights into human exercise physiology. Scand J Med Sci Sports 2015; 25:100-9.
  • White AT, Johnson SC. Physiological comparison of international, national and regional alpine skiers. Int J Sports Med 1991; 12:374-378.
  • Martin D, Powers S, Cicale M, et al. Validity of pulse oximetry during exercise in elite endurance athletes. J Appl Physiol 1992; 72:455-8.
  • Mollard P, Bourdillon N, Letournel M, et al. Validity of arterialized earlobe blood gases at rest and exercise in normoxia and hypoxia. Respir Physiol Neurobiol 2010; 172:179-183.
  • Powers SK, Dodd S, Woodyard J, et al. Haemoglobin saturation during incremental arm and leg exercise. Br J Sports Med 1984; 18:212-16.
  • Harms CA, McClaran SR, Nickele GA, et al. Exercise-induced arterial hypoxaemia in healthy young women. J Physiol 1998; 507(2): 619-628.
  • Schwartz J, Katz SA, Fegley RW, et al. Sex and race differences in the development of lung function. Am Rev Respir Dis 1988; 138:1415-1421.
  • McClaran SR, Harms CA, Pegelow DF et al. Smaller lungs in women affect exercise hyperpnea. J Appl Physiol 1998; 84:1872-1881.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Research Article
Authors

Selcen Korkmaz Eryılmaz 0000-0002-3680-3580

Metin Polat 0000-0001-7299-0531

Çiğdem Özdemir

Publication Date December 30, 2019
Submission Date January 9, 2019
Published in Issue Year 2019 Volume: 28 Issue: 3

Cite

APA Korkmaz Eryılmaz, S., Polat, M., & Özdemir, Ç. (2019). AEROBİK VE ANAEROBİK ANTRENMANLI GENÇ KADIN SPORCULARDA EGZERSİZLE OLUŞAN HİPOKSEMİ. Sağlık Bilimleri Dergisi, 28(3), 129-134. https://doi.org/10.34108/eujhs.510970
AMA Korkmaz Eryılmaz S, Polat M, Özdemir Ç. AEROBİK VE ANAEROBİK ANTRENMANLI GENÇ KADIN SPORCULARDA EGZERSİZLE OLUŞAN HİPOKSEMİ. JHS. December 2019;28(3):129-134. doi:10.34108/eujhs.510970
Chicago Korkmaz Eryılmaz, Selcen, Metin Polat, and Çiğdem Özdemir. “AEROBİK VE ANAEROBİK ANTRENMANLI GENÇ KADIN SPORCULARDA EGZERSİZLE OLUŞAN HİPOKSEMİ”. Sağlık Bilimleri Dergisi 28, no. 3 (December 2019): 129-34. https://doi.org/10.34108/eujhs.510970.
EndNote Korkmaz Eryılmaz S, Polat M, Özdemir Ç (December 1, 2019) AEROBİK VE ANAEROBİK ANTRENMANLI GENÇ KADIN SPORCULARDA EGZERSİZLE OLUŞAN HİPOKSEMİ. Sağlık Bilimleri Dergisi 28 3 129–134.
IEEE S. Korkmaz Eryılmaz, M. Polat, and Ç. Özdemir, “AEROBİK VE ANAEROBİK ANTRENMANLI GENÇ KADIN SPORCULARDA EGZERSİZLE OLUŞAN HİPOKSEMİ”, JHS, vol. 28, no. 3, pp. 129–134, 2019, doi: 10.34108/eujhs.510970.
ISNAD Korkmaz Eryılmaz, Selcen et al. “AEROBİK VE ANAEROBİK ANTRENMANLI GENÇ KADIN SPORCULARDA EGZERSİZLE OLUŞAN HİPOKSEMİ”. Sağlık Bilimleri Dergisi 28/3 (December 2019), 129-134. https://doi.org/10.34108/eujhs.510970.
JAMA Korkmaz Eryılmaz S, Polat M, Özdemir Ç. AEROBİK VE ANAEROBİK ANTRENMANLI GENÇ KADIN SPORCULARDA EGZERSİZLE OLUŞAN HİPOKSEMİ. JHS. 2019;28:129–134.
MLA Korkmaz Eryılmaz, Selcen et al. “AEROBİK VE ANAEROBİK ANTRENMANLI GENÇ KADIN SPORCULARDA EGZERSİZLE OLUŞAN HİPOKSEMİ”. Sağlık Bilimleri Dergisi, vol. 28, no. 3, 2019, pp. 129-34, doi:10.34108/eujhs.510970.
Vancouver Korkmaz Eryılmaz S, Polat M, Özdemir Ç. AEROBİK VE ANAEROBİK ANTRENMANLI GENÇ KADIN SPORCULARDA EGZERSİZLE OLUŞAN HİPOKSEMİ. JHS. 2019;28(3):129-34.