Salmonella spp. tespiti için ilmiğe dayalı izotermal amplifikasyon (LAMP) ile kombine üç boyutlu (3B) yazıcıda mikroakışkan çip imalatı
Year 2022,
Volume: 33 Issue: 2, 64 - 69, 23.12.2022
Meltem Eryıldız
,
Vildan Bilgic
,
Seda Ekici
,
Akin Yığın
,
Mehmet Demirci
Abstract
Gıda ve çevresel kaynaklarda Salmonella'nın hızlı, güvenilir ve hassas tespiti, halk sağlığını korumak için çok önemlidir. LAMP yöntemi özel cihazlara ve deneyimli personele ihtiyaç duymaksızın uygulanabilecek bir yöntem olduğu için son yıllarda sıklıkla tercih edilmektedir. LAMP’ın, mikroakışkan cihazlarla kombine edilmesi sınırlı kaynakların olduğu durumlarda, hızlı tanı testleri için bir alternatifdir. Salmonella spp. tespiti için, üç boyutlu yazıcıda biyouyumlu PLA filament kullanılarak mikroakışkan çip oluşturularak, ilmiğe dayalı izotermal amplifikasyon yöntemi ile kombine edilmesi amaçlanmıştır. Mikroakışkan çipler CATIA V5 programı kullanılarak tasarlandı (Çip boyutları 15x12.5x2.4 mm, kanal çapı 850 µm) ve PLA filament kullanılarak 3B yazıcıda üretildi. Salmonella spesifik LAMP reaksiyonları için InvA geni seçildi. Mikroakışkan çipler için kuru ısı bloğu kullanıldı ve LAMP protokolü 65℃’da 30 dak.’ydı. Testin duyarlılık, özgüllük, PPD ve NPD ölçümleri gerçekleştirildi.
Kültür yöntemi ile Salmonella pozitif saptanan 25 pozitif numune arasında, mikrosantrifüj tüpünde uygulanan LAMP reaksiyonu ile sadece bir numunede yalancı negatif sonuc saptanmışken, mikroakışkan çip üstünde uygulanan LAMP reaksiyonunda ise iki numune yalancı negatif olarak tespit edildi.
Sonuç olarak; verilerimiz LAMP reaksiyonları ile mikroakışkan çip teknolojisinin birleştirilebileceğini, üç boyutlu yazıcıların bu mikroakışkan çiplerin üretimi sırasında kullanılabileceğini bize göstermiştir.
Supporting Institution
destekleyen kurum yoktur.
References
- Bell RL, Jarvis KG, Ottesen AR, McFarland MA, Brown EW. (2016). Recent and emerging innovations in Salmonella detection: a food and environmental perspective. Microb Biotechnol. 9(3):279-92.
- Coelho BJ, Veigas B, Águas H, et al., (2017). A Digital Microfluidics Platform for Loop-Mediated Isothermal Amplification Detection. Sensors (Basel). 17(11):2616.
- Demirci M, Yigin A, Altun SK, Uysal HK, Saribas S, Kocazeybek BS. (2019). Salmonella Spp. and Shigella Spp. detection via multiplex real-time PCR and discrimination via MALDI-TOF MS in different animal raw milk samples. Niger J Clin Pract.;22(8):1083-1090.
- Ferguson BS, Buchsbaum SF, Swensen JS, Hsieh K, Lou X, Soh HT. (2009). Integrated microfluidic electrochemical DNA sensor. Anal Chem. 81(15):6503-8.
- Gambino D, Gargano V, Butera G, Sciortino S, Pizzo M, Oliveri G, Cardamone C, Piraino C, Cassata G, Vicari D, Costa A. (2022). Food Is Reservoir of MDR Salmonella: Prevalence of ESBLs Profiles and Resistance Genes in Strains Isolated from Food. Microorganisms. 10(4):780.
- Garrido-Maestu A, Azinheiro S, Carvalho J, Abalde-Cela S, Carbó-Argibay E, Diéguez L, Piotrowski M, Kolen'ko YV, Prado M. (2017). Combination of Microfluidic Loop-Mediated Isothermal Amplification with Gold Nanoparticles for Rapid Detection of Salmonella spp. in Food Samples. Front Microbiol. 8:2159.
- Gebeyehu A, Taye M, Abebe R. (2022). Isolation, molecular detection and antimicrobial susceptibility profile of Salmonella from raw cow milk collected from dairy farms and households in southern Ethiopia. BMC Microbiol. 22(1):84.
- Jiang, X., Jing, W., Sun, X., Liu, Q., Yang, C., Liu, S., et al. (2016). High-throughput microfluidic device for LAMP analysis of airborne bacteria. ACS Sensors 1, 958–962.
- Kadimisetty K, Song J, Doto AM, et al. (2018). Fully 3D printed integrated reactor array for point-of-care molecular diagnostics. Biosens Bioelectron. 109:156-163.
- Mejía-Salazar JR, Rodrigues Cruz K, Materón Vásques EM, Novais de Oliveira O Jr. (2020). Microfluidic Point-of-Care Devices: New Trends and Future Prospects for eHealth Diagnostics. Sensors (Basel). 20(7):1951.
- Njiru ZK. (2012). Loop-mediated isothermal amplification technology: towards point of care diagnostics. PLoS Negl Trop Dis. 6(6):e1572.
- Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28(12):E63.
- Ongaro AE, Di Giuseppe D, Kermanizadeh A, et al. (2020). Polylactic is a Sustainable, Low Absorption, Low Autofluorescence Alternative to Other Plastics for Microfluidic and Organ-on-Chip Applications. Anal Chem. 92(9):6693-6701.
- Ozge Ü, Demirci M, Yığın A, Ekici S. (2021). Farklı Salmonella Typhimurium kökenlerinin taşıdıkları patojenite adası ve direnç genlerinin in silico analizi. Etlik Veteriner Mikrobiyoloji Dergisi, 32(2): 151-156.
- Patterson AS, Heithoff DM, Ferguson BS, Soh HT, Mahan MJ, Plaxco KW. (2013). Microfluidic chip-based detection and intraspecies strain discrimination of Salmonella serovars derived from whole blood of septic mice. Appl Environ Microbiol. 79(7):2302-2311.
- Popa GL, Papa MI. (2021). Salmonella spp. infection - a continuous threat worldwide. Germs. 11(1):88-96.
- Ruiz C, Kadimisetty K, Yin K, Mauk MG, Zhao H, Liu C. (2020). Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing. Micromachines (Basel). 11(6):567.
- Sun Y, Quyen TL, Hung TQ, Chin WH, Wolff A, Bang DD. (2015). A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples. Lab Chip. 15(8):1898-904.
- Yang Q, Domesle KJ, Ge B. (2018). Loop-Mediated Isothermal Amplification for Salmonella Detection in Food and Feed: Current Applications and Future Directions. Foodborne Pathog Dis. 15(6):309-331.
- Zhang M, Liu J, Shen Z, Liu Y, Song Y, Liang Y, Li Z, Nie L, Fang Y, Zhao Y. (2021). A newly developed paper embedded microchip based on LAMP for rapid multiple detections of foodborne pathogens. BMC Microbiol. 2021;21(1):197.
Microfluidic chip fabrication in three-dimensional (3D) printer combined with loop-mediated isothermal amplification (LAMP) for detection of Salmonella spp.
Year 2022,
Volume: 33 Issue: 2, 64 - 69, 23.12.2022
Meltem Eryıldız
,
Vildan Bilgic
,
Seda Ekici
,
Akin Yığın
,
Mehmet Demirci
Abstract
Rapid, reliable and sensitive detection of Salmonella in food and environmental sources is essential to protect public health. LAMP method has been preferred frequently in recent years because it is a method that can be applied without the need for special devices and experienced personnel. Combining LAMP with microfluidic devices is an alternative for rapid diagnostic testing where resources are limited. Aim of this study was to create a microfluidic chip using a biocompatible PLA filament in a three-dimensional printer and to be combined with the loop-mediated isothermal amplification method for the detection of Salmonella spp
Microfluidic chips were designed using the CATIA V5 program (chip dimensions 15x12.5x2.4 mm, channel diameter 850 µm) and fabricated on a 3D printer using PLA filament. InvA gene was selected for Salmonella specific LAMP reactions. Dry heat block was used for microfluidic chips and LAMP protocol was 30 min. at 65℃. Sensitivity, specificity, PPV and NPV measurements of the test were performed.
Among the 25 positive samples that were found to be Salmonella positive by the culture method, only one sample showed a false negative result with the LAMP reaction applied in the microcentrifuge tube, while two samples were detected as false negative in the LAMP reaction applied on the microfluidic chip.
As a conclusion, Our data has shown us that LAMP reactions and microfluidic chip technology can be combined, and that three-dimensional printers can be used during the production of these microfluidic chips.
References
- Bell RL, Jarvis KG, Ottesen AR, McFarland MA, Brown EW. (2016). Recent and emerging innovations in Salmonella detection: a food and environmental perspective. Microb Biotechnol. 9(3):279-92.
- Coelho BJ, Veigas B, Águas H, et al., (2017). A Digital Microfluidics Platform for Loop-Mediated Isothermal Amplification Detection. Sensors (Basel). 17(11):2616.
- Demirci M, Yigin A, Altun SK, Uysal HK, Saribas S, Kocazeybek BS. (2019). Salmonella Spp. and Shigella Spp. detection via multiplex real-time PCR and discrimination via MALDI-TOF MS in different animal raw milk samples. Niger J Clin Pract.;22(8):1083-1090.
- Ferguson BS, Buchsbaum SF, Swensen JS, Hsieh K, Lou X, Soh HT. (2009). Integrated microfluidic electrochemical DNA sensor. Anal Chem. 81(15):6503-8.
- Gambino D, Gargano V, Butera G, Sciortino S, Pizzo M, Oliveri G, Cardamone C, Piraino C, Cassata G, Vicari D, Costa A. (2022). Food Is Reservoir of MDR Salmonella: Prevalence of ESBLs Profiles and Resistance Genes in Strains Isolated from Food. Microorganisms. 10(4):780.
- Garrido-Maestu A, Azinheiro S, Carvalho J, Abalde-Cela S, Carbó-Argibay E, Diéguez L, Piotrowski M, Kolen'ko YV, Prado M. (2017). Combination of Microfluidic Loop-Mediated Isothermal Amplification with Gold Nanoparticles for Rapid Detection of Salmonella spp. in Food Samples. Front Microbiol. 8:2159.
- Gebeyehu A, Taye M, Abebe R. (2022). Isolation, molecular detection and antimicrobial susceptibility profile of Salmonella from raw cow milk collected from dairy farms and households in southern Ethiopia. BMC Microbiol. 22(1):84.
- Jiang, X., Jing, W., Sun, X., Liu, Q., Yang, C., Liu, S., et al. (2016). High-throughput microfluidic device for LAMP analysis of airborne bacteria. ACS Sensors 1, 958–962.
- Kadimisetty K, Song J, Doto AM, et al. (2018). Fully 3D printed integrated reactor array for point-of-care molecular diagnostics. Biosens Bioelectron. 109:156-163.
- Mejía-Salazar JR, Rodrigues Cruz K, Materón Vásques EM, Novais de Oliveira O Jr. (2020). Microfluidic Point-of-Care Devices: New Trends and Future Prospects for eHealth Diagnostics. Sensors (Basel). 20(7):1951.
- Njiru ZK. (2012). Loop-mediated isothermal amplification technology: towards point of care diagnostics. PLoS Negl Trop Dis. 6(6):e1572.
- Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28(12):E63.
- Ongaro AE, Di Giuseppe D, Kermanizadeh A, et al. (2020). Polylactic is a Sustainable, Low Absorption, Low Autofluorescence Alternative to Other Plastics for Microfluidic and Organ-on-Chip Applications. Anal Chem. 92(9):6693-6701.
- Ozge Ü, Demirci M, Yığın A, Ekici S. (2021). Farklı Salmonella Typhimurium kökenlerinin taşıdıkları patojenite adası ve direnç genlerinin in silico analizi. Etlik Veteriner Mikrobiyoloji Dergisi, 32(2): 151-156.
- Patterson AS, Heithoff DM, Ferguson BS, Soh HT, Mahan MJ, Plaxco KW. (2013). Microfluidic chip-based detection and intraspecies strain discrimination of Salmonella serovars derived from whole blood of septic mice. Appl Environ Microbiol. 79(7):2302-2311.
- Popa GL, Papa MI. (2021). Salmonella spp. infection - a continuous threat worldwide. Germs. 11(1):88-96.
- Ruiz C, Kadimisetty K, Yin K, Mauk MG, Zhao H, Liu C. (2020). Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing. Micromachines (Basel). 11(6):567.
- Sun Y, Quyen TL, Hung TQ, Chin WH, Wolff A, Bang DD. (2015). A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples. Lab Chip. 15(8):1898-904.
- Yang Q, Domesle KJ, Ge B. (2018). Loop-Mediated Isothermal Amplification for Salmonella Detection in Food and Feed: Current Applications and Future Directions. Foodborne Pathog Dis. 15(6):309-331.
- Zhang M, Liu J, Shen Z, Liu Y, Song Y, Liang Y, Li Z, Nie L, Fang Y, Zhao Y. (2021). A newly developed paper embedded microchip based on LAMP for rapid multiple detections of foodborne pathogens. BMC Microbiol. 2021;21(1):197.