Research Article
BibTex RIS Cite

Türkiye ve Romanya kökenli Pseudomonas aeruginosa izolatlarının antibiyotik dirençlerinin, biyofilm oluşumu ve genotiplerinin araştırılması

Year 2022, Volume: 33 Issue: 2, 1 - 6, 23.12.2022
https://doi.org/10.35864/evmd.1166225

Abstract

Pseudomonas aeruginosa çeşitli hastalık olgularından ve hastane infeksiyonlarından sıklıkla izole edilmektedir. Çoklu antibiyotik direnç özelliği ve biyofilm üretimine sahip olması nedeniyle klinik açıdan önem arz etmektedir. Bu çalışmada Türkiye ve Romanya’da pnömoni bulguları gösteren köpeklerden alınan bronşiyal aspirat örneklerinden izole edilen P. aeruginosa suşlarının biyofilm üretiminin belirlenerek antibiyotiplendirme ve genotiplendirilmelerinin yapılması amaçlanmıştır. Bu amaçla Türkiye ve Romanya izolatı 10’ar adet P. aeruginosa izolatının biyofilm özelliği Kongo red agar yöntemi ile belirlendi. İzolatların antibiyotik direnç durumları Kirby-Bauer Disk Difüzyon Metodu ile belirlendi ve direnç profiline bağlı olarak antibiyotiplendirme yapıldı. Genotipik yakınlıklar RAPD-PCR ile belirlendi. Çalışmada incelenen tüm izolatların biyofilm üretimi yönünden pozitif olduğu saptandı. Antibiyogram sonucunda Türkiye izolatlarının enrofloksasin, seftriakson, amoksisilin + klavulanik asit, siprofloksasin, meropenem, kolistin, gentamisin ve azitromisin içeren disklerle karşı direnç durumları sırasıyla %30, %70, %100, %40, %30, %10, %10, %100 ve Romanya izolatlarının da sırasıyla %30, %60, %100, %30, %10, %0, %10 ve %100 olduğu belirlendi. Antibiyotiplendirme sonucunda, Türkiye ve Romanya izolatlarının %86-100 arasında benzerlik gösterdiği belirlendi. Filogenetik değerlendirme ile Türkiye ve Romanya izolatlarının filogenotipik benzerliklerinin %47-96 arasında olduğu belirlendi. Sonuç olarak, izolatların antibiyotik direncinin yüksek olduğu ve biyofilm üretimine bağlı olarak tedavide kullanılan antibiyotiklere karşı direnç şekillenmiş olabileceği kanısına varıldı.

References

  • Atshan SS, Shamsudin MN, Lung LT, Sekawi Z, Ghaznavi-Rad E, Pei CP. (2012). Comparative characterisation of genotypically different clones of MRSA in the production of biofilms. J Biomed Biotechnol. 2012, 417-427.
  • Bilgehan H. (1994). Klinik Mikrobiyoloji. 8. Basım, İzmir: Barış Yayınları Fakülteler Kitabevi, 139-145.
  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. (1999). The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 6(37), 1771-1776.
  • Clinical and Laboratory Standards Institute (2018). Performance standards for antimicrobial susceptiblity testing: 26th informational supplement, M100-S26, Wayne, PA.
  • Costerton JW, Stewart PS, Greenberg EP. (1999). Bacterial Biofilms: A Common Cause of Persistent Infections. Science. 284, 1318-1322.
  • Çiftçi İH, Çetinkaya Z, Aktepe OC, Arslan F, Altındiş M. (2005). Klinik Örneklerden İzole Edilen Pseudomonas aeruginosa Suşlarının Antibiyotiklere Duyarlılıkları. Türk Mikrobiyol Cem Derg. 35, 98-102.
  • Donlan RM, Casterton JW. (2002). Biofilms: Survival mechanisms of clinically revelant microorganisms. Clin Microbiol Rev. 15(2), 167-193.
  • Erdem B. (1999). Pseudomonaslar. In: Ustaçelebi Ş, Mutlu G, İmir T (Eds). Temel ve Klinik Mikrobiyoloji. 10. Baskı. Ankara: Güneş Kitabevi, 551-558.
  • Gür D. (1999). Hastane infeksiyonu etkeni Gram negatif nonfermentatif basiller ve antibiyotiklere direnç sorunu. Hast İnfeks Derg. 3(1), 33-39.
  • Haenni M, Hocquet D, Ponsin C, Cholley P, Guyeux C, Madec JY, Bertrand X. (2015). Population structure and antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Vet Res. 11, 9.
  • Hilton AC, Mortiboy D, Banks JG, Penn CW. (2006). RAPD analysis of environmental, food and clinical isolates of Campylobacter spp. FEMS Immunol Med Microbiol. 18 (2), 119-124.
  • Høiby N, Ciofu O, Johansen HK. (2011). The clinical impact of bacterial biofilms. Int J Oral Sci. 3(2), 55-65.
  • Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS, Sadovskaya I, Secor PR, Tseng BS, Scian M, Filloux A, Wozniak DJ. (2015). Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci. 112, 11353-11358.
  • Köseoğlu EÖ, Kocagöz S, Ergin,A. (2005). Yoğun bakım ünitelerinde infeksiyon etkeni olan gram-negatif basillerin değerlendirilmesi. İnfeks Derg. 19(1), 75-80.
  • Kumar MA, Anandapandian KTK, Parthiban K. (2011). Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Braz Arch Biol Technol. 54(2), 259-265.
  • Manohar P, Shanthini T, Philip RA, Ramkumar S, Kale M, Ramesh N. (2018). Role of biofilm-specific antibiotic resistance genes PA0756-0757, PA5033 and PA2070 in Pseudomonas aeruginosa. bioRxiv preprint first posted online Jun. 11, 2018. doi: http://dx.doi.org/10.1101/341826.
  • Marcinkiewicz J, Strus M, Pasich E. (2013). Antibiotic resistance: a “dark side” of biofilm associated chronic infections. Pol Arch Med Wewn. 123(6), 309-313.
  • Nielsen EM, Engberg J, Fussing V, Petersen L, Brogren CH. (2000). Evaluation of phenotypic and genotypic methods for subtyping Campylobacter jejuni isolates from humans, poultry, and cattle. J Clin Microbiol. 38(10), 3800-3810.
  • Ono K, Kurazono T, Niwa H, Itoh K. (2003). Comparison of three methods for epidemiological typing of Campylobacter jejuni and C. coli. Curr Microbiol. 47, 364-371.
  • Öztürk O, Öztürk C, Delialioğlu N, Emekdaş G. (2010). Çoklu Antibiyotik Dirençli Gram Negatif Bakterilerde Kolistin Duyarlılığının Belirlenmesi. Mersin Univ Sağlık Bilim Derg. 3(3), 15-20.
  • Pollack M. (1995). Pseudomonas Infections. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases,4th edt, New York: Wiley Medical Publication, 665-671.
  • Sallman RS, Hussein SS, Ali MR. (2018). ERIC-PCR Typing, RAPD-PCR Fingerprinting and Quorum Sensing Gene Analysis of Pseudomonas aeruginosa Isolated from Different Clinical Sources. Al-Mustansiriyah J Sci. 29(2), 51-62.
  • Sharma I, Choudhury D. (2015). Detection of PelA Gene in P. aeruginosa from Clinical Samples Using Polymerase Chain Reaction with Reference to Biofilm Production In N.E India. Medi Sci. 4(10), 119-121.
  • Shi F, Chen YY, Wassenaar TM, Woods WH, Coloe PJ, Fry BN. (2002). Development and application of a new scheme for typing Campylobacter jejuni and Campylobacter coli by PCR-based Restriction Fragment Length Polymorphism Analysis. J Clin Microbiol. 40(5), 1791-1797.
  • Verbist L. (1991). Incidence of multi-resistance in gram negative bacterial isolates from intensive care units in Belgium: a surveillance study. Scan J Infect Dis. 78, 45.
  • Versalovic J, Lupski JR. (2002). Molecular detection and genotyping of pathogens: more accurate and rapid answers. Trends Microbiol. 10, 15-21.
  • Wand ME, Bock LJ, Turton JF, Nugent PG. (2012). Acinetobacter baumannii virulence is enhanced in Galleria mellonella following biofilm adaptation. J Med Microbiol. 61, 470-477.
  • Wassenaar TM, Newell DG. (2000). Genotyping of Campylobacter spp. Appl Environ Microbiol. 66(1), 1-9.
  • Wyngaarden SB. (1992). Cecil Textbook of Medicine. WB. Sauders Philadelpia Company, 1717-1721.

Investigation of the antibiotic resistances, biofilm formation, and genotypes of Pseudomonas aeruginosa isolates from Turkey and Romania

Year 2022, Volume: 33 Issue: 2, 1 - 6, 23.12.2022
https://doi.org/10.35864/evmd.1166225

Abstract

Pseudomonas aeruginosa is frequently isolated from various disease and nosocomial infections. It is clinically important because of its multiple antibiotic resistance and biofilm production. The aims of this study were to determine the production of biofilm and to make antibiotyping and genotyping of P. aeruginosa strains isolated from bronchial aspirate samples of dogs with pneumonia in Turkey and Romania. For this purpose, biofilm properties of 10 Turkish and 10 Romanian isolates were determined by Congo red agar method. The resistance profiles of the isolates were determined by Kirby-Bauer Disk Diffusion Method. The antibiotyping was performed according to the resistance profiles of the isolates. Genotypical similarities were determined by RAPD-PCR. In terms of biofilm production, all of the isolates examined in this study were found to be positive. In consequence of the antibiograms, the resistance rates against enrofloxacin, ceftriaxone, amoxicillin + clavulanic acid, ciprofloxacin, meropenem, colistin, gentamicin and azithromycin were stated as 30%, 70%, 100%, 40%, 30%, 10%, 10%, 100% for Turkish isolates and 30%, 60%, 100%, 30%, 10%, 0%, 10%, 100% for Romanian isolates, respectively. As a result of antibiotyping, similarities of the isolates from Turkey and Romania were determined to be between 86-100%. Phylogenotypical similarities of the isolates from Turkey and Romania were determined to be between 47-96%. It was concluded that antibiotic resistances of isolates were high and resistance against antibiotics used in the treatment could be formed due to biofilm production.

References

  • Atshan SS, Shamsudin MN, Lung LT, Sekawi Z, Ghaznavi-Rad E, Pei CP. (2012). Comparative characterisation of genotypically different clones of MRSA in the production of biofilms. J Biomed Biotechnol. 2012, 417-427.
  • Bilgehan H. (1994). Klinik Mikrobiyoloji. 8. Basım, İzmir: Barış Yayınları Fakülteler Kitabevi, 139-145.
  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. (1999). The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 6(37), 1771-1776.
  • Clinical and Laboratory Standards Institute (2018). Performance standards for antimicrobial susceptiblity testing: 26th informational supplement, M100-S26, Wayne, PA.
  • Costerton JW, Stewart PS, Greenberg EP. (1999). Bacterial Biofilms: A Common Cause of Persistent Infections. Science. 284, 1318-1322.
  • Çiftçi İH, Çetinkaya Z, Aktepe OC, Arslan F, Altındiş M. (2005). Klinik Örneklerden İzole Edilen Pseudomonas aeruginosa Suşlarının Antibiyotiklere Duyarlılıkları. Türk Mikrobiyol Cem Derg. 35, 98-102.
  • Donlan RM, Casterton JW. (2002). Biofilms: Survival mechanisms of clinically revelant microorganisms. Clin Microbiol Rev. 15(2), 167-193.
  • Erdem B. (1999). Pseudomonaslar. In: Ustaçelebi Ş, Mutlu G, İmir T (Eds). Temel ve Klinik Mikrobiyoloji. 10. Baskı. Ankara: Güneş Kitabevi, 551-558.
  • Gür D. (1999). Hastane infeksiyonu etkeni Gram negatif nonfermentatif basiller ve antibiyotiklere direnç sorunu. Hast İnfeks Derg. 3(1), 33-39.
  • Haenni M, Hocquet D, Ponsin C, Cholley P, Guyeux C, Madec JY, Bertrand X. (2015). Population structure and antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Vet Res. 11, 9.
  • Hilton AC, Mortiboy D, Banks JG, Penn CW. (2006). RAPD analysis of environmental, food and clinical isolates of Campylobacter spp. FEMS Immunol Med Microbiol. 18 (2), 119-124.
  • Høiby N, Ciofu O, Johansen HK. (2011). The clinical impact of bacterial biofilms. Int J Oral Sci. 3(2), 55-65.
  • Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS, Sadovskaya I, Secor PR, Tseng BS, Scian M, Filloux A, Wozniak DJ. (2015). Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci. 112, 11353-11358.
  • Köseoğlu EÖ, Kocagöz S, Ergin,A. (2005). Yoğun bakım ünitelerinde infeksiyon etkeni olan gram-negatif basillerin değerlendirilmesi. İnfeks Derg. 19(1), 75-80.
  • Kumar MA, Anandapandian KTK, Parthiban K. (2011). Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Braz Arch Biol Technol. 54(2), 259-265.
  • Manohar P, Shanthini T, Philip RA, Ramkumar S, Kale M, Ramesh N. (2018). Role of biofilm-specific antibiotic resistance genes PA0756-0757, PA5033 and PA2070 in Pseudomonas aeruginosa. bioRxiv preprint first posted online Jun. 11, 2018. doi: http://dx.doi.org/10.1101/341826.
  • Marcinkiewicz J, Strus M, Pasich E. (2013). Antibiotic resistance: a “dark side” of biofilm associated chronic infections. Pol Arch Med Wewn. 123(6), 309-313.
  • Nielsen EM, Engberg J, Fussing V, Petersen L, Brogren CH. (2000). Evaluation of phenotypic and genotypic methods for subtyping Campylobacter jejuni isolates from humans, poultry, and cattle. J Clin Microbiol. 38(10), 3800-3810.
  • Ono K, Kurazono T, Niwa H, Itoh K. (2003). Comparison of three methods for epidemiological typing of Campylobacter jejuni and C. coli. Curr Microbiol. 47, 364-371.
  • Öztürk O, Öztürk C, Delialioğlu N, Emekdaş G. (2010). Çoklu Antibiyotik Dirençli Gram Negatif Bakterilerde Kolistin Duyarlılığının Belirlenmesi. Mersin Univ Sağlık Bilim Derg. 3(3), 15-20.
  • Pollack M. (1995). Pseudomonas Infections. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and Practice of Infectious Diseases,4th edt, New York: Wiley Medical Publication, 665-671.
  • Sallman RS, Hussein SS, Ali MR. (2018). ERIC-PCR Typing, RAPD-PCR Fingerprinting and Quorum Sensing Gene Analysis of Pseudomonas aeruginosa Isolated from Different Clinical Sources. Al-Mustansiriyah J Sci. 29(2), 51-62.
  • Sharma I, Choudhury D. (2015). Detection of PelA Gene in P. aeruginosa from Clinical Samples Using Polymerase Chain Reaction with Reference to Biofilm Production In N.E India. Medi Sci. 4(10), 119-121.
  • Shi F, Chen YY, Wassenaar TM, Woods WH, Coloe PJ, Fry BN. (2002). Development and application of a new scheme for typing Campylobacter jejuni and Campylobacter coli by PCR-based Restriction Fragment Length Polymorphism Analysis. J Clin Microbiol. 40(5), 1791-1797.
  • Verbist L. (1991). Incidence of multi-resistance in gram negative bacterial isolates from intensive care units in Belgium: a surveillance study. Scan J Infect Dis. 78, 45.
  • Versalovic J, Lupski JR. (2002). Molecular detection and genotyping of pathogens: more accurate and rapid answers. Trends Microbiol. 10, 15-21.
  • Wand ME, Bock LJ, Turton JF, Nugent PG. (2012). Acinetobacter baumannii virulence is enhanced in Galleria mellonella following biofilm adaptation. J Med Microbiol. 61, 470-477.
  • Wassenaar TM, Newell DG. (2000). Genotyping of Campylobacter spp. Appl Environ Microbiol. 66(1), 1-9.
  • Wyngaarden SB. (1992). Cecil Textbook of Medicine. WB. Sauders Philadelpia Company, 1717-1721.
There are 29 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences
Journal Section Original Article
Authors

Merve Gizem Sezener 0000-0003-0487-7515

Volkan Enes Ergüden 0000-0003-2215-2868

Arzu Findik 0000-0002-9123-6160

Serhan Akgöz 0000-0002-5130-7120

Timur Gülhan 0000-0003-4798-1427

Oana–alexandra Moţco (cıocan) 0000-0002-9342-2637

Alper Çiftci 0000-0001-8370-8677

Publication Date December 23, 2022
Submission Date August 24, 2022
Published in Issue Year 2022 Volume: 33 Issue: 2

Cite

APA Sezener, M. G., Ergüden, V. E., Findik, A., Akgöz, S., et al. (2022). Investigation of the antibiotic resistances, biofilm formation, and genotypes of Pseudomonas aeruginosa isolates from Turkey and Romania. Etlik Veteriner Mikrobiyoloji Dergisi, 33(2), 1-6. https://doi.org/10.35864/evmd.1166225

download