DNA Binding, Nuclease/Photonuclease, and Phototoxicty Properties of Water Soluble Silicon (IV) Phthalocyanine
Year 2024,
Volume: 3 Issue: 4, 126 - 133, 30.12.2024
Gökçe Seyhan
,
Ceren Boguslu
,
Can Özgür Yalçın
,
Zekeriya Bıyıklıoğlu
,
Burak Barut
Abstract
Photodynamic therapy (PDT) is known as a method in which photosensitizers produce reactive oxygen species in the presence of light and oxygen, leading to cell death. In this paper, DNA interaction properties of bis[4-({8)-[3-(trimethylamino)phenoxy]octyl}oxy)] substituted silicon (IV) phthalocyanine (GsB-SiPc) were examined using a UV-Vis spectrophometer and agarose gel electrophoresis techniques. Afterwards, cytotoxic/phototoxic effects of GsB-SiPc were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays on A549 cells. The results showed that GsB-SiPc bound to ct-DNA via a groove binding mode. In nuclease/photonuclease experiments, GsB-SiPc had low nuclease activity in the dark but it showed high photonuclease activity in the presence of light, depending on compound concentration and light dose. In addition, GsB-SiPc demonstrated remarkable phototoxicity toward human lung adenocarcinoma (A549) cell line at 50 and 100 µM in the presence of light. The in vitro data revealed the potential of GsB-SiPc as a photodynamic therapy agent for the treatment of lung cancer. These findings need to be supported by further studies.
Ethical Statement
Since we did not use human/animal or human/animal data in this study, our study does not require ethics committee approval.
References
- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi:10.3322/caac.21834
- Debela DT, Muzazu SG, Heraro KD, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021;9:20503121211034366. doi:10.1177/20503121211034366
- Nguyen VN, Pham HL, Nguyen XT. Recent progress in organic carbon dot-based photosensitizers for photodynamic cancer therapy. Dyes and Pigments. 2024;230:112359. doi: 10.1016/j.dyepig.2024.112359
- Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res. 2018;22:25. doi:10.1186/s40824-018-0140-z
- Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657-674. doi:10.1038/s41571-020-0410-2
- Karbasi M, Varzandeh M, Karbasi M, Mobarakeh AI, Falahati M, Hamblin MR. Photodynamic therapy based on metal-organic framework in cancer treatment: A comprehensive review of integration strategies for synergistic combination therapies. Nano-Structures & Nano-Objects. 2024;40:101315. doi:10.1016/j.nanoso.2024.101315
- Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics. 2023;15(9):2257. doi:10.3390/pharmaceutics15092257
- Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098-1107. doi:10.1016/j.biopha.2018.07.049
- Oluwajembola AM, Cleanclay WD, Onyia AF, et al. Photosensitizers in photodynamic therapy: An advancement in cancer treatment. Results in Chemistry. 2024;10:101715. doi:10.1016/j.rechem.2024.101715
- Kessel D. Death pathways associated with photodynamic therapy. Photochemistry and Photobiology. 2021;97(5):1101-1103. doi:10.1111/php.13436
- Nowak-Perlak M, Ziółkowski P, Woźniak M. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. Phytomedicine. 2023;119:155035. doi:10.1016/j.phymed.2023.155035
- Brilkina AA, Dubasova LV, Sergeeva EA, et al. Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: A comparative in vitro analysis. J Photochem Photobiol B. 2019;191:128-134. doi:10.1016/j.jphotobiol.2018.12.020
- Adnane F, El-Zayat E, Fahmy HM. The combinational application of photodynamic therapy and nanotechnology in skin cancer treatment: A review. Tissue Cell. 2022;77:101856. doi:10.1016/j.tice.2022.101856
- Li X, Zheng BD, Peng XH, et al. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coordination Chemistry Reviews. 2019;379:147-160. doi:10.1016/j.ccr.2017.08.003
- Santos KLM, Barros RM, da Silva Lima DP, et al. Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagnosis and Photodynamic Therapy. 2020;32:102032. doi:10.1016/j.pdpdt.2020.102032
- Barut B, Barut EN, Yalçın CÖ, et al. The synthesis and therapeutic effect of silicon(IV) phthalocyanines for colorectal cancer cells in photodynamic therapy by altering Wnt/β-catenin and apoptotic signaling. Journal of Photochemistry and Photobiology A: Chemistry. 2024;453:115663. doi:10.1016/j.jphotochem.2024.115663
- Barut B, Çoban Ö, Yalçın CÖ, et al. Synthesis, DNA interaction, in vitro/in silico topoisomerase II inhibition and photodynamic therapy activities of two cationic BODIPY derivatives. Dyes and Pigments. 2020;174:108072. doi:10.1016/j.dyepig.2019.108072
- Kocak A, Yilmaz H, Faiz O, Andac O. Experimental and theoretical studies on Cu (II) complex of N, N′-disalicylidene-2, 3-diaminopyridine ligand reveal indirect evidence for DNA intercalation. Polyhedron. 2016;104:106-115. doi:10.1016/j.poly.2015.11.037
- Yabaş E, Bağda E, Bağda E. The water soluble ball-type phthalocyanine as new potential anticancer drugs. Dyes and Pigments. 2015;120:220-227. doi:10.1016/j.dyepig.2015.03.038
- Baş H, Biyiklioglu Z, Barut B, Yalçın CÖ, Özel A. Highly water soluble axial disubstituted silicon (IV) phthalocyanine, naphthalocyanine: Synthesis, DNA interaction and anticancer effects against human lung (A549), liver (SNU-398), melanoma (SK-MEL128), prostate (DU-145), breast (BT-20) cell lines. Inorganic Chemistry Communications. 2023;156:111139. doi:10.1016/j.inoche.2023.111139
- Barut B, Yalçın CÖ, Demirbaş Ü, Akçay HT, Kantekin H, Özel A. The novel Zn (II) phthalocyanines: Synthesis, characterization, photochemical, DNA interaction and cytotoxic/phototoxic properties. Journal of Molecular Structure. 2020;1218:128502. doi:10.1016/j.molstruc.2020.128502
- Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, et al. Key genes and drug delivery systems to improve the efficiency of chemotherapy. Cancer Drug Resistance. 2021;4(1): 163. doi:10.20517/cdr.2020.64
- Sirajuddin M, Ali S, Badshah A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology. 2013;124:1-19. doi:10.1016/j.jphotobiol.2013.03.013
- Phadte AA, Banerjee S, Mate NA, Banerjee A. Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochemistry and Biophysics Reports. 2019;18:100629. doi:10.1016/j.bbrep.2019.100629
- Barut B, Seyhan G, Keleş T, Kulein B, Biyiklioglu Z. Nonperipherally and peripherally substituted water‐soluble magnesium (II) phthalocyanines and their DNA binding, nuclease activities. Applied Organometallic Chemistry. 2024;38(5):e7421. doi:10.1002/aoc.7421
- Borges HL, Linden R, Wang JY. DNA damage-induced cell death: lessons from the central nervous system. Cell Research. 2008;18(1):17-26. doi:10.1038/cr.2007.110
- Alvarez N, Sevilla A. Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies. International Journal of Molecular Sciences. 2024;25(2):1023. doi:10.3390/ijms25021023
- Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences. 2021;22(23):12827. doi:10.3390/ijms222312827
- Ma D, Zhang H, Zhao M, et al. A novel boronate-linked polydopamine-poloxamer 407 loaded zinc phthalocyanine nanoparticles for photothermal and photodynamic synergy therapy. Journal of Drug Delivery Science and Technology. 2023;87:104870. doi:10.1016/j.jddst.2023.104870
- Onal E, Tuncel O, Erdoğan Vatansever I, et al. Development of AB3-type novel phthalocyanine and porphyrin photosensitizers conjugated with triphenylphosphonium for higher photodynamic efficacy. ACS Omega. 2022;7(43):39404-39416. doi:10.1021/acsomega.2c05814
Suda Çözünür Silisyum (IV) Ftalosiyaninin DNA Bağlanma, Nükleaz/Fotonükleaz ve Fototoksik Özellikleri
Year 2024,
Volume: 3 Issue: 4, 126 - 133, 30.12.2024
Gökçe Seyhan
,
Ceren Boguslu
,
Can Özgür Yalçın
,
Zekeriya Bıyıklıoğlu
,
Burak Barut
Abstract
Fotodinamik terapi (PDT), fotosensitizörlerin ışık ve oksijen varlığında reaktif oksijen türleri ürettiği ve hücre ölümüne yol açtığı bilinen bir yöntemdir. Bu makalede, bis[4-({8)-[3-(trimetilamino)fenoksi]oktil}oksi)] yan grubu içeren silisyum (IV) ftalosiyaninin (GsB-SiPc) DNA etkileşim özellikleri bir UV-Vis spektrofotometresi ve agaroz jel elektroforezi teknikleri kullanılarak incelenmiştir. Daha sonra, GsB-SiPc'nin sitotoksik/fototoksik etkileri A549 hücreleri üzerinde 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromür (MTT) deneyleri kullanılarak incelenmiştir. Sonuçlar, GsB-SiPc'nin ct-DNA'ya bir oluk bağlama modu aracılığıyla bağlandığını göstermiştir. Nükleaz/fotonükleaz deneylerinde, GsB-SiPc karanlıkta düşük nükleaz aktivitesine sahipti ancak bileşik konsantrasyonuna ve ışık dozuna bağlı olarak ışık varlığında yüksek fotonükleaz aktivitesi gösterdi. Ek olarak, GsB-SiPc ışık varlığında 50 ve 100 µM'de insan akciğer adenokarsinomu (A549) hücre hattına karşı dikkate değer fototoksisite gösterdi. İn vitro veriler, GsB-SiPc'nin akciğer kanserinin tedavisi için bir fotodinamik terapi ajanı olarak potansiyelini ortaya koydu. Bu bulguların daha fazla çalışmayla desteklenmesi gerekiyor.
References
- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi:10.3322/caac.21834
- Debela DT, Muzazu SG, Heraro KD, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021;9:20503121211034366. doi:10.1177/20503121211034366
- Nguyen VN, Pham HL, Nguyen XT. Recent progress in organic carbon dot-based photosensitizers for photodynamic cancer therapy. Dyes and Pigments. 2024;230:112359. doi: 10.1016/j.dyepig.2024.112359
- Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res. 2018;22:25. doi:10.1186/s40824-018-0140-z
- Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657-674. doi:10.1038/s41571-020-0410-2
- Karbasi M, Varzandeh M, Karbasi M, Mobarakeh AI, Falahati M, Hamblin MR. Photodynamic therapy based on metal-organic framework in cancer treatment: A comprehensive review of integration strategies for synergistic combination therapies. Nano-Structures & Nano-Objects. 2024;40:101315. doi:10.1016/j.nanoso.2024.101315
- Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics. 2023;15(9):2257. doi:10.3390/pharmaceutics15092257
- Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098-1107. doi:10.1016/j.biopha.2018.07.049
- Oluwajembola AM, Cleanclay WD, Onyia AF, et al. Photosensitizers in photodynamic therapy: An advancement in cancer treatment. Results in Chemistry. 2024;10:101715. doi:10.1016/j.rechem.2024.101715
- Kessel D. Death pathways associated with photodynamic therapy. Photochemistry and Photobiology. 2021;97(5):1101-1103. doi:10.1111/php.13436
- Nowak-Perlak M, Ziółkowski P, Woźniak M. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. Phytomedicine. 2023;119:155035. doi:10.1016/j.phymed.2023.155035
- Brilkina AA, Dubasova LV, Sergeeva EA, et al. Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: A comparative in vitro analysis. J Photochem Photobiol B. 2019;191:128-134. doi:10.1016/j.jphotobiol.2018.12.020
- Adnane F, El-Zayat E, Fahmy HM. The combinational application of photodynamic therapy and nanotechnology in skin cancer treatment: A review. Tissue Cell. 2022;77:101856. doi:10.1016/j.tice.2022.101856
- Li X, Zheng BD, Peng XH, et al. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coordination Chemistry Reviews. 2019;379:147-160. doi:10.1016/j.ccr.2017.08.003
- Santos KLM, Barros RM, da Silva Lima DP, et al. Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagnosis and Photodynamic Therapy. 2020;32:102032. doi:10.1016/j.pdpdt.2020.102032
- Barut B, Barut EN, Yalçın CÖ, et al. The synthesis and therapeutic effect of silicon(IV) phthalocyanines for colorectal cancer cells in photodynamic therapy by altering Wnt/β-catenin and apoptotic signaling. Journal of Photochemistry and Photobiology A: Chemistry. 2024;453:115663. doi:10.1016/j.jphotochem.2024.115663
- Barut B, Çoban Ö, Yalçın CÖ, et al. Synthesis, DNA interaction, in vitro/in silico topoisomerase II inhibition and photodynamic therapy activities of two cationic BODIPY derivatives. Dyes and Pigments. 2020;174:108072. doi:10.1016/j.dyepig.2019.108072
- Kocak A, Yilmaz H, Faiz O, Andac O. Experimental and theoretical studies on Cu (II) complex of N, N′-disalicylidene-2, 3-diaminopyridine ligand reveal indirect evidence for DNA intercalation. Polyhedron. 2016;104:106-115. doi:10.1016/j.poly.2015.11.037
- Yabaş E, Bağda E, Bağda E. The water soluble ball-type phthalocyanine as new potential anticancer drugs. Dyes and Pigments. 2015;120:220-227. doi:10.1016/j.dyepig.2015.03.038
- Baş H, Biyiklioglu Z, Barut B, Yalçın CÖ, Özel A. Highly water soluble axial disubstituted silicon (IV) phthalocyanine, naphthalocyanine: Synthesis, DNA interaction and anticancer effects against human lung (A549), liver (SNU-398), melanoma (SK-MEL128), prostate (DU-145), breast (BT-20) cell lines. Inorganic Chemistry Communications. 2023;156:111139. doi:10.1016/j.inoche.2023.111139
- Barut B, Yalçın CÖ, Demirbaş Ü, Akçay HT, Kantekin H, Özel A. The novel Zn (II) phthalocyanines: Synthesis, characterization, photochemical, DNA interaction and cytotoxic/phototoxic properties. Journal of Molecular Structure. 2020;1218:128502. doi:10.1016/j.molstruc.2020.128502
- Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, et al. Key genes and drug delivery systems to improve the efficiency of chemotherapy. Cancer Drug Resistance. 2021;4(1): 163. doi:10.20517/cdr.2020.64
- Sirajuddin M, Ali S, Badshah A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology. 2013;124:1-19. doi:10.1016/j.jphotobiol.2013.03.013
- Phadte AA, Banerjee S, Mate NA, Banerjee A. Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochemistry and Biophysics Reports. 2019;18:100629. doi:10.1016/j.bbrep.2019.100629
- Barut B, Seyhan G, Keleş T, Kulein B, Biyiklioglu Z. Nonperipherally and peripherally substituted water‐soluble magnesium (II) phthalocyanines and their DNA binding, nuclease activities. Applied Organometallic Chemistry. 2024;38(5):e7421. doi:10.1002/aoc.7421
- Borges HL, Linden R, Wang JY. DNA damage-induced cell death: lessons from the central nervous system. Cell Research. 2008;18(1):17-26. doi:10.1038/cr.2007.110
- Alvarez N, Sevilla A. Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies. International Journal of Molecular Sciences. 2024;25(2):1023. doi:10.3390/ijms25021023
- Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences. 2021;22(23):12827. doi:10.3390/ijms222312827
- Ma D, Zhang H, Zhao M, et al. A novel boronate-linked polydopamine-poloxamer 407 loaded zinc phthalocyanine nanoparticles for photothermal and photodynamic synergy therapy. Journal of Drug Delivery Science and Technology. 2023;87:104870. doi:10.1016/j.jddst.2023.104870
- Onal E, Tuncel O, Erdoğan Vatansever I, et al. Development of AB3-type novel phthalocyanine and porphyrin photosensitizers conjugated with triphenylphosphonium for higher photodynamic efficacy. ACS Omega. 2022;7(43):39404-39416. doi:10.1021/acsomega.2c05814