Research Article
BibTex RIS Cite

DNA Binding, Nuclease/Photonuclease, and Phototoxicty Properties of Water Soluble Silicon (IV) Phthalocyanine

Year 2024, Volume: 3 Issue: 4, 126 - 133, 30.12.2024
https://doi.org/10.59518/farabimedj.1579677

Abstract

Photodynamic therapy (PDT) is known as a method in which photosensitizers produce reactive oxygen species in the presence of light and oxygen, leading to cell death. In this paper, DNA interaction properties of bis[4-({8)-[3-(trimethylamino)phenoxy]octyl}oxy)] substituted silicon (IV) phthalocyanine (GsB-SiPc) were examined using a UV-Vis spectrophometer and agarose gel electrophoresis techniques. Afterwards, cytotoxic/phototoxic effects of GsB-SiPc were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays on A549 cells. The results showed that GsB-SiPc bound to ct-DNA via a groove binding mode. In nuclease/photonuclease experiments, GsB-SiPc had low nuclease activity in the dark but it showed high photonuclease activity in the presence of light, depending on compound concentration and light dose. In addition, GsB-SiPc demonstrated remarkable phototoxicity toward human lung adenocarcinoma (A549) cell line at 50 and 100 µM in the presence of light. The in vitro data revealed the potential of GsB-SiPc as a photodynamic therapy agent for the treatment of lung cancer. These findings need to be supported by further studies.

Ethical Statement

Since we did not use human/animal or human/animal data in this study, our study does not require ethics committee approval.

References

  • Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi:10.3322/caac.21834
  • Debela DT, Muzazu SG, Heraro KD, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021;9:20503121211034366. doi:10.1177/20503121211034366
  • Nguyen VN, Pham HL, Nguyen XT. Recent progress in organic carbon dot-based photosensitizers for photodynamic cancer therapy. Dyes and Pigments. 2024;230:112359. doi: 10.1016/j.dyepig.2024.112359
  • Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res. 2018;22:25. doi:10.1186/s40824-018-0140-z
  • Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657-674. doi:10.1038/s41571-020-0410-2
  • Karbasi M, Varzandeh M, Karbasi M, Mobarakeh AI, Falahati M, Hamblin MR. Photodynamic therapy based on metal-organic framework in cancer treatment: A comprehensive review of integration strategies for synergistic combination therapies. Nano-Structures & Nano-Objects. 2024;40:101315. doi:10.1016/j.nanoso.2024.101315
  • Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics. 2023;15(9):2257. doi:10.3390/pharmaceutics15092257
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098-1107. doi:10.1016/j.biopha.2018.07.049
  • Oluwajembola AM, Cleanclay WD, Onyia AF, et al. Photosensitizers in photodynamic therapy: An advancement in cancer treatment. Results in Chemistry. 2024;10:101715. doi:10.1016/j.rechem.2024.101715
  • Kessel D. Death pathways associated with photodynamic therapy. Photochemistry and Photobiology. 2021;97(5):1101-1103. doi:10.1111/php.13436
  • Nowak-Perlak M, Ziółkowski P, Woźniak M. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. Phytomedicine. 2023;119:155035. doi:10.1016/j.phymed.2023.155035
  • Brilkina AA, Dubasova LV, Sergeeva EA, et al. Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: A comparative in vitro analysis. J Photochem Photobiol B. 2019;191:128-134. doi:10.1016/j.jphotobiol.2018.12.020
  • Adnane F, El-Zayat E, Fahmy HM. The combinational application of photodynamic therapy and nanotechnology in skin cancer treatment: A review. Tissue Cell. 2022;77:101856. doi:10.1016/j.tice.2022.101856
  • Li X, Zheng BD, Peng XH, et al. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coordination Chemistry Reviews. 2019;379:147-160. doi:10.1016/j.ccr.2017.08.003
  • Santos KLM, Barros RM, da Silva Lima DP, et al. Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagnosis and Photodynamic Therapy. 2020;32:102032. doi:10.1016/j.pdpdt.2020.102032
  • Barut B, Barut EN, Yalçın CÖ, et al. The synthesis and therapeutic effect of silicon(IV) phthalocyanines for colorectal cancer cells in photodynamic therapy by altering Wnt/β-catenin and apoptotic signaling. Journal of Photochemistry and Photobiology A: Chemistry. 2024;453:115663. doi:10.1016/j.jphotochem.2024.115663
  • Barut B, Çoban Ö, Yalçın CÖ, et al. Synthesis, DNA interaction, in vitro/in silico topoisomerase II inhibition and photodynamic therapy activities of two cationic BODIPY derivatives. Dyes and Pigments. 2020;174:108072. doi:10.1016/j.dyepig.2019.108072
  • Kocak A, Yilmaz H, Faiz O, Andac O. Experimental and theoretical studies on Cu (II) complex of N, N′-disalicylidene-2, 3-diaminopyridine ligand reveal indirect evidence for DNA intercalation. Polyhedron. 2016;104:106-115. doi:10.1016/j.poly.2015.11.037
  • Yabaş E, Bağda E, Bağda E. The water soluble ball-type phthalocyanine as new potential anticancer drugs. Dyes and Pigments. 2015;120:220-227. doi:10.1016/j.dyepig.2015.03.038
  • Baş H, Biyiklioglu Z, Barut B, Yalçın CÖ, Özel A. Highly water soluble axial disubstituted silicon (IV) phthalocyanine, naphthalocyanine: Synthesis, DNA interaction and anticancer effects against human lung (A549), liver (SNU-398), melanoma (SK-MEL128), prostate (DU-145), breast (BT-20) cell lines. Inorganic Chemistry Communications. 2023;156:111139. doi:10.1016/j.inoche.2023.111139
  • Barut B, Yalçın CÖ, Demirbaş Ü, Akçay HT, Kantekin H, Özel A. The novel Zn (II) phthalocyanines: Synthesis, characterization, photochemical, DNA interaction and cytotoxic/phototoxic properties. Journal of Molecular Structure. 2020;1218:128502. doi:10.1016/j.molstruc.2020.128502
  • Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, et al. Key genes and drug delivery systems to improve the efficiency of chemotherapy. Cancer Drug Resistance. 2021;4(1): 163. doi:10.20517/cdr.2020.64
  • Sirajuddin M, Ali S, Badshah A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology. 2013;124:1-19. doi:10.1016/j.jphotobiol.2013.03.013
  • Phadte AA, Banerjee S, Mate NA, Banerjee A. Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochemistry and Biophysics Reports. 2019;18:100629. doi:10.1016/j.bbrep.2019.100629
  • Barut B, Seyhan G, Keleş T, Kulein B, Biyiklioglu Z. Nonperipherally and peripherally substituted water‐soluble magnesium (II) phthalocyanines and their DNA binding, nuclease activities. Applied Organometallic Chemistry. 2024;38(5):e7421. doi:10.1002/aoc.7421
  • Borges HL, Linden R, Wang JY. DNA damage-induced cell death: lessons from the central nervous system. Cell Research. 2008;18(1):17-26. doi:10.1038/cr.2007.110
  • Alvarez N, Sevilla A. Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies. International Journal of Molecular Sciences. 2024;25(2):1023. doi:10.3390/ijms25021023
  • Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences. 2021;22(23):12827. doi:10.3390/ijms222312827
  • Ma D, Zhang H, Zhao M, et al. A novel boronate-linked polydopamine-poloxamer 407 loaded zinc phthalocyanine nanoparticles for photothermal and photodynamic synergy therapy. Journal of Drug Delivery Science and Technology. 2023;87:104870. doi:10.1016/j.jddst.2023.104870
  • Onal E, Tuncel O, Erdoğan Vatansever I, et al. Development of AB3-type novel phthalocyanine and porphyrin photosensitizers conjugated with triphenylphosphonium for higher photodynamic efficacy. ACS Omega. 2022;7(43):39404-39416. doi:10.1021/acsomega.2c05814

Suda Çözünür Silisyum (IV) Ftalosiyaninin DNA Bağlanma, Nükleaz/Fotonükleaz ve Fototoksik Özellikleri

Year 2024, Volume: 3 Issue: 4, 126 - 133, 30.12.2024
https://doi.org/10.59518/farabimedj.1579677

Abstract

Fotodinamik terapi (PDT), fotosensitizörlerin ışık ve oksijen varlığında reaktif oksijen türleri ürettiği ve hücre ölümüne yol açtığı bilinen bir yöntemdir. Bu makalede, bis[4-({8)-[3-(trimetilamino)fenoksi]oktil}oksi)] yan grubu içeren silisyum (IV) ftalosiyaninin (GsB-SiPc) DNA etkileşim özellikleri bir UV-Vis spektrofotometresi ve agaroz jel elektroforezi teknikleri kullanılarak incelenmiştir. Daha sonra, GsB-SiPc'nin sitotoksik/fototoksik etkileri A549 hücreleri üzerinde 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromür (MTT) deneyleri kullanılarak incelenmiştir. Sonuçlar, GsB-SiPc'nin ct-DNA'ya bir oluk bağlama modu aracılığıyla bağlandığını göstermiştir. Nükleaz/fotonükleaz deneylerinde, GsB-SiPc karanlıkta düşük nükleaz aktivitesine sahipti ancak bileşik konsantrasyonuna ve ışık dozuna bağlı olarak ışık varlığında yüksek fotonükleaz aktivitesi gösterdi. Ek olarak, GsB-SiPc ışık varlığında 50 ve 100 µM'de insan akciğer adenokarsinomu (A549) hücre hattına karşı dikkate değer fototoksisite gösterdi. İn vitro veriler, GsB-SiPc'nin akciğer kanserinin tedavisi için bir fotodinamik terapi ajanı olarak potansiyelini ortaya koydu. Bu bulguların daha fazla çalışmayla desteklenmesi gerekiyor.

References

  • Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi:10.3322/caac.21834
  • Debela DT, Muzazu SG, Heraro KD, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021;9:20503121211034366. doi:10.1177/20503121211034366
  • Nguyen VN, Pham HL, Nguyen XT. Recent progress in organic carbon dot-based photosensitizers for photodynamic cancer therapy. Dyes and Pigments. 2024;230:112359. doi: 10.1016/j.dyepig.2024.112359
  • Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res. 2018;22:25. doi:10.1186/s40824-018-0140-z
  • Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657-674. doi:10.1038/s41571-020-0410-2
  • Karbasi M, Varzandeh M, Karbasi M, Mobarakeh AI, Falahati M, Hamblin MR. Photodynamic therapy based on metal-organic framework in cancer treatment: A comprehensive review of integration strategies for synergistic combination therapies. Nano-Structures & Nano-Objects. 2024;40:101315. doi:10.1016/j.nanoso.2024.101315
  • Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics. 2023;15(9):2257. doi:10.3390/pharmaceutics15092257
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098-1107. doi:10.1016/j.biopha.2018.07.049
  • Oluwajembola AM, Cleanclay WD, Onyia AF, et al. Photosensitizers in photodynamic therapy: An advancement in cancer treatment. Results in Chemistry. 2024;10:101715. doi:10.1016/j.rechem.2024.101715
  • Kessel D. Death pathways associated with photodynamic therapy. Photochemistry and Photobiology. 2021;97(5):1101-1103. doi:10.1111/php.13436
  • Nowak-Perlak M, Ziółkowski P, Woźniak M. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. Phytomedicine. 2023;119:155035. doi:10.1016/j.phymed.2023.155035
  • Brilkina AA, Dubasova LV, Sergeeva EA, et al. Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: A comparative in vitro analysis. J Photochem Photobiol B. 2019;191:128-134. doi:10.1016/j.jphotobiol.2018.12.020
  • Adnane F, El-Zayat E, Fahmy HM. The combinational application of photodynamic therapy and nanotechnology in skin cancer treatment: A review. Tissue Cell. 2022;77:101856. doi:10.1016/j.tice.2022.101856
  • Li X, Zheng BD, Peng XH, et al. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coordination Chemistry Reviews. 2019;379:147-160. doi:10.1016/j.ccr.2017.08.003
  • Santos KLM, Barros RM, da Silva Lima DP, et al. Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagnosis and Photodynamic Therapy. 2020;32:102032. doi:10.1016/j.pdpdt.2020.102032
  • Barut B, Barut EN, Yalçın CÖ, et al. The synthesis and therapeutic effect of silicon(IV) phthalocyanines for colorectal cancer cells in photodynamic therapy by altering Wnt/β-catenin and apoptotic signaling. Journal of Photochemistry and Photobiology A: Chemistry. 2024;453:115663. doi:10.1016/j.jphotochem.2024.115663
  • Barut B, Çoban Ö, Yalçın CÖ, et al. Synthesis, DNA interaction, in vitro/in silico topoisomerase II inhibition and photodynamic therapy activities of two cationic BODIPY derivatives. Dyes and Pigments. 2020;174:108072. doi:10.1016/j.dyepig.2019.108072
  • Kocak A, Yilmaz H, Faiz O, Andac O. Experimental and theoretical studies on Cu (II) complex of N, N′-disalicylidene-2, 3-diaminopyridine ligand reveal indirect evidence for DNA intercalation. Polyhedron. 2016;104:106-115. doi:10.1016/j.poly.2015.11.037
  • Yabaş E, Bağda E, Bağda E. The water soluble ball-type phthalocyanine as new potential anticancer drugs. Dyes and Pigments. 2015;120:220-227. doi:10.1016/j.dyepig.2015.03.038
  • Baş H, Biyiklioglu Z, Barut B, Yalçın CÖ, Özel A. Highly water soluble axial disubstituted silicon (IV) phthalocyanine, naphthalocyanine: Synthesis, DNA interaction and anticancer effects against human lung (A549), liver (SNU-398), melanoma (SK-MEL128), prostate (DU-145), breast (BT-20) cell lines. Inorganic Chemistry Communications. 2023;156:111139. doi:10.1016/j.inoche.2023.111139
  • Barut B, Yalçın CÖ, Demirbaş Ü, Akçay HT, Kantekin H, Özel A. The novel Zn (II) phthalocyanines: Synthesis, characterization, photochemical, DNA interaction and cytotoxic/phototoxic properties. Journal of Molecular Structure. 2020;1218:128502. doi:10.1016/j.molstruc.2020.128502
  • Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, et al. Key genes and drug delivery systems to improve the efficiency of chemotherapy. Cancer Drug Resistance. 2021;4(1): 163. doi:10.20517/cdr.2020.64
  • Sirajuddin M, Ali S, Badshah A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology. 2013;124:1-19. doi:10.1016/j.jphotobiol.2013.03.013
  • Phadte AA, Banerjee S, Mate NA, Banerjee A. Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochemistry and Biophysics Reports. 2019;18:100629. doi:10.1016/j.bbrep.2019.100629
  • Barut B, Seyhan G, Keleş T, Kulein B, Biyiklioglu Z. Nonperipherally and peripherally substituted water‐soluble magnesium (II) phthalocyanines and their DNA binding, nuclease activities. Applied Organometallic Chemistry. 2024;38(5):e7421. doi:10.1002/aoc.7421
  • Borges HL, Linden R, Wang JY. DNA damage-induced cell death: lessons from the central nervous system. Cell Research. 2008;18(1):17-26. doi:10.1038/cr.2007.110
  • Alvarez N, Sevilla A. Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies. International Journal of Molecular Sciences. 2024;25(2):1023. doi:10.3390/ijms25021023
  • Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences. 2021;22(23):12827. doi:10.3390/ijms222312827
  • Ma D, Zhang H, Zhao M, et al. A novel boronate-linked polydopamine-poloxamer 407 loaded zinc phthalocyanine nanoparticles for photothermal and photodynamic synergy therapy. Journal of Drug Delivery Science and Technology. 2023;87:104870. doi:10.1016/j.jddst.2023.104870
  • Onal E, Tuncel O, Erdoğan Vatansever I, et al. Development of AB3-type novel phthalocyanine and porphyrin photosensitizers conjugated with triphenylphosphonium for higher photodynamic efficacy. ACS Omega. 2022;7(43):39404-39416. doi:10.1021/acsomega.2c05814
There are 30 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biochemistry
Journal Section Research Articles
Authors

Gökçe Seyhan 0000-0002-8553-9093

Ceren Boguslu 0000-0001-5950-587X

Can Özgür Yalçın 0000-0003-4032-3229

Zekeriya Bıyıklıoğlu 0000-0001-5138-214X

Burak Barut 0000-0002-7441-8771

Early Pub Date December 24, 2024
Publication Date December 30, 2024
Submission Date November 5, 2024
Acceptance Date December 10, 2024
Published in Issue Year 2024 Volume: 3 Issue: 4

Cite

AMA Seyhan G, Boguslu C, Yalçın CÖ, Bıyıklıoğlu Z, Barut B. DNA Binding, Nuclease/Photonuclease, and Phototoxicty Properties of Water Soluble Silicon (IV) Phthalocyanine. Farabi Med J. December 2024;3(4):126-133. doi:10.59518/farabimedj.1579677

*The articles to be sent to the journal should be prepared according to the sample files given below. Manuscripts not prepared in accordance with the journal format will be returned to the Author(s).

1. ORIGİNAL ARTİCLE TEMPLATE/ÖZGÜN MAKALE ŞABLONU

2. CASE REPORT TEMPLATE/OLGU SUNUMU ŞABLONU

3. REVİEW TEMPLATE /DERLEME ŞABLONU

4. TITLE PAGE/BAŞLIK SAYFASI

5. COPYRİGHT TRANSFER FORM/TELİF HAKKI DEVİR FORMU

6. COVER LETTER/KAPAK YAZISI

**International Medical Journals Editorial Board (ICMJE) directive