Research Article
BibTex RIS Cite

BORSADA İŞLEM GÖREN OTOMOTİV İMALAT ŞİRKETLERİNİN FİNANSAL PERFORMANSININ ENTROPİ TABANLI TOPSIS YÖNTEMİYLE BELİRLENMESİ

Year 2023, Volume: 8 Issue: 2, 287 - 297, 30.06.2023
https://doi.org/10.29106/fesa.1233893

Abstract

Bu makalede Borsa İstanbul'da (BİST) işlem gören 9 ana metal sanayi şirketinin 2017-2021 dönemine ait mali tabloları kullanılarak şirketlerin finansal performansları TOPSIS yöntemi ile analiz edilmiştir. Değerlendirme kriteri olarak kullanılan finansal oranların ağırlıklarının belirlenmesinde subjektiflikten kaçınmak için geliştirilen Entropi yöntemi kullanılmıştır. Öncelikle işletmelerin mali tabloları incelenir. Finansal oranlar hesaplanır. TOPSIS yöntemi ile şirket performansını gösteren tek puana dönüştürülür. İşletmelerin sıralaması bu performans puanına göre yapılmıştır. Araştırma sonuçlarına göre finansal performans sıralaması KARSN, FMZIP, BFREN, DİTAŞ, OTKAR, TOASO, EGEEN ve ASUZU'dur.

References

  • Barros C. P., Wanke P., (2015). An Analysis of African Airlines Efficiency with Two-Stage TOPSIS and Neural Networks, Journal of Air Transport Management, 44-45, 90-102.
  • Bülbül, S. ve Köse, A. (2009), “Evaluation of the Financial Performance of Turkish Food Companies with Multi-Purpose Decision Making Methods”
  • Demireli, E. (2010). “TOPSIS Multi Criteria Decision-Making System: An Application on Public Banks in Turkey.”, Dokuz Eylül University, Journal of Entrepreneurship and Development, 5(1), 39-51.
  • Dumanoğlu ve Ergül , 2010 : 105-107; Mahmoodzadeh vd., 2007: 336-337
  • Esbouei, S. K., Ghadikolaei, A. S. & Antucheviciene, J. (2014). Using FANP and Fuzzy VIKOR for ranking manufacturing companies based on their financial performance. Economic Computation & Economic Cybernetics Studies & Research, 48(3), 287-308.
  • Feng, C. M. ve R. T. Wang (2000), ”Performance Evaluation for Airlines Including the Consideration of Financial Ratios”, Journal of Air Transport Management, 6, 133-142.
  • Hemmati M., Dalghandi S. A., Nazari H., (2013) . Measuring Relative Performance of Banking Industry Using A DEA and TOPSIS, Management Science Letters, 3, 499-504.
  • Hwang, C.L. & Yoon, K. (1981). Multiple attributes decision making methodsz and applications, Springer, Berlin Heidelberg, 52.
  • Jahanshahloo, G.R., Hosseinzadeh L.F. & Izadikhah, M. (2006). Extension of the TOPSIS method for decision-making problems with fuzzy data. Appl. Math. Comput. 181(2). 1544-1551.
  • Lai, Y. J., Liu, T. Y., Hwang, C. L. (1994). TOPSIS for MCDM, European Journal of Operational Research, 76, 486-500.
  • Oztaysi B., (2014). A Decision Model for Information Technology Selection Using AHP Integrated TOPSIS- Grey: The Case of Content Management Systems , Knowledge – Based Systems, 70, 44-4.
  • Rees, B. (1990), Financial Analysis , Prentice Hall International Editions.
  • Shahroudi K. , Rouydel H., (2012) Using a Multi-criteria Decision Making Approach (ANP-TOPSIS) to Evaluate Suppliers in İran’s Auto Industry, International Journal of Applied Operationel Research, 2(2), 37-48.
  • Shih, H.S., Shyur, H.J. &Lee, E.S. (2007) An Extension of TOPSIS for Group Decision Making. Mathematical and Comnputer Modelling, 45(7-8), 801-813.
  • Sun, Z. Q. Medical Synthetic Evaluation Methods and Their Application. Beijing: The Publish-ing Company of Chemical Industry, 2006.
  • TİKEN, Filiz (2005), Turkish Automotive Industry, TSKB Research, İstanbul.
  • Ustasuleyman, T. (2009). Evaluation of Servise Quality in the Banking Sector: AHS-TOPSIS Method. Bankers Journal, 69(2), 33-44.
  • Uygurtürk, H., &Korkmaz, T. (2012) “Determining Financial Performance with TOPSIS Multi-Criteria Decision Making Method: An Application on Basic Automotive Industry Enterprises.”, Eskişehir Osmangazi University Journal of Economics and Administrative Sciences, 7(2).
  • WU Desheng ve Olson David L. (2006). "A TOPSIS Data Mining Demonstration And Application To Credit Scoring", International Journal of Data Warehousing& Mining, 2(3), July-September, 1-10.
  • Yanık, L. & Eren, T. (2017). Analysis of Financial Performance of Automotive Manufacturing Sector Firms Traded in Borsa Istanbul with AHP, TOPSIS, ELECTRE and VIKOR Methods. Yalova Journal of Social Sciences, 7 (13) , 165-188.
  • Yeh, C.-H. (2002), “A Problem Based Selection of Multi-Attribute Decision-Making Methods“, Journal of International Transactions in Operational Research, Vol.9,169-181.
  • Yörük, N. & Erdem, N. S. (2010). The Effect of Intellectual Capital and its Elements on the Financial Performance of Automotive Sector Companies Traded in the Istanbul Stock Exchange. Ataturk University Journal of Economics and Administrative Sciences, 22 (2) , 397-413.
  • Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353.

Determination of Financial Performance of Automotive Manufacturing Companies Trade on BIST 100 via Entropy Based TOPSIS Method

Year 2023, Volume: 8 Issue: 2, 287 - 297, 30.06.2023
https://doi.org/10.29106/fesa.1233893

Abstract

In this article, the financial performances of the companies are analyzed using the TOPSIS method, using the financial statements of 9 main metal industry companies traded in Borsa Istanbul (BIST) for the period 2017-2021. The Entropy method, which was developed to avoid subjectivity, was used in determining the weights of financial ratios used as evaluation criteria. First, the financial statement of the enterprisesare examined. Financial ratios are calculated. It is converted into a single score showing company performance with the TOPSIS method. The ranking of the enterprises was made according to this performance score. According to the results of the research, the financial performance rankings are KARSN, FMZIP, BFREN, DİTAŞ, OTKAR, TOASO, EGEEN and ASUZU.

References

  • Barros C. P., Wanke P., (2015). An Analysis of African Airlines Efficiency with Two-Stage TOPSIS and Neural Networks, Journal of Air Transport Management, 44-45, 90-102.
  • Bülbül, S. ve Köse, A. (2009), “Evaluation of the Financial Performance of Turkish Food Companies with Multi-Purpose Decision Making Methods”
  • Demireli, E. (2010). “TOPSIS Multi Criteria Decision-Making System: An Application on Public Banks in Turkey.”, Dokuz Eylül University, Journal of Entrepreneurship and Development, 5(1), 39-51.
  • Dumanoğlu ve Ergül , 2010 : 105-107; Mahmoodzadeh vd., 2007: 336-337
  • Esbouei, S. K., Ghadikolaei, A. S. & Antucheviciene, J. (2014). Using FANP and Fuzzy VIKOR for ranking manufacturing companies based on their financial performance. Economic Computation & Economic Cybernetics Studies & Research, 48(3), 287-308.
  • Feng, C. M. ve R. T. Wang (2000), ”Performance Evaluation for Airlines Including the Consideration of Financial Ratios”, Journal of Air Transport Management, 6, 133-142.
  • Hemmati M., Dalghandi S. A., Nazari H., (2013) . Measuring Relative Performance of Banking Industry Using A DEA and TOPSIS, Management Science Letters, 3, 499-504.
  • Hwang, C.L. & Yoon, K. (1981). Multiple attributes decision making methodsz and applications, Springer, Berlin Heidelberg, 52.
  • Jahanshahloo, G.R., Hosseinzadeh L.F. & Izadikhah, M. (2006). Extension of the TOPSIS method for decision-making problems with fuzzy data. Appl. Math. Comput. 181(2). 1544-1551.
  • Lai, Y. J., Liu, T. Y., Hwang, C. L. (1994). TOPSIS for MCDM, European Journal of Operational Research, 76, 486-500.
  • Oztaysi B., (2014). A Decision Model for Information Technology Selection Using AHP Integrated TOPSIS- Grey: The Case of Content Management Systems , Knowledge – Based Systems, 70, 44-4.
  • Rees, B. (1990), Financial Analysis , Prentice Hall International Editions.
  • Shahroudi K. , Rouydel H., (2012) Using a Multi-criteria Decision Making Approach (ANP-TOPSIS) to Evaluate Suppliers in İran’s Auto Industry, International Journal of Applied Operationel Research, 2(2), 37-48.
  • Shih, H.S., Shyur, H.J. &Lee, E.S. (2007) An Extension of TOPSIS for Group Decision Making. Mathematical and Comnputer Modelling, 45(7-8), 801-813.
  • Sun, Z. Q. Medical Synthetic Evaluation Methods and Their Application. Beijing: The Publish-ing Company of Chemical Industry, 2006.
  • TİKEN, Filiz (2005), Turkish Automotive Industry, TSKB Research, İstanbul.
  • Ustasuleyman, T. (2009). Evaluation of Servise Quality in the Banking Sector: AHS-TOPSIS Method. Bankers Journal, 69(2), 33-44.
  • Uygurtürk, H., &Korkmaz, T. (2012) “Determining Financial Performance with TOPSIS Multi-Criteria Decision Making Method: An Application on Basic Automotive Industry Enterprises.”, Eskişehir Osmangazi University Journal of Economics and Administrative Sciences, 7(2).
  • WU Desheng ve Olson David L. (2006). "A TOPSIS Data Mining Demonstration And Application To Credit Scoring", International Journal of Data Warehousing& Mining, 2(3), July-September, 1-10.
  • Yanık, L. & Eren, T. (2017). Analysis of Financial Performance of Automotive Manufacturing Sector Firms Traded in Borsa Istanbul with AHP, TOPSIS, ELECTRE and VIKOR Methods. Yalova Journal of Social Sciences, 7 (13) , 165-188.
  • Yeh, C.-H. (2002), “A Problem Based Selection of Multi-Attribute Decision-Making Methods“, Journal of International Transactions in Operational Research, Vol.9,169-181.
  • Yörük, N. & Erdem, N. S. (2010). The Effect of Intellectual Capital and its Elements on the Financial Performance of Automotive Sector Companies Traded in the Istanbul Stock Exchange. Ataturk University Journal of Economics and Administrative Sciences, 22 (2) , 397-413.
  • Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353.
There are 23 citations in total.

Details

Primary Language English
Subjects Finance
Journal Section Araştırma Makaleleri
Authors

Ayşegül Turunç 0000-0001-5100-2610

Hicabi Ersoy 0000-0002-3573-1976

Early Pub Date June 28, 2023
Publication Date June 30, 2023
Submission Date January 13, 2023
Acceptance Date February 27, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Turunç, A., & Ersoy, H. (2023). Determination of Financial Performance of Automotive Manufacturing Companies Trade on BIST 100 via Entropy Based TOPSIS Method. Finans Ekonomi Ve Sosyal Araştırmalar Dergisi, 8(2), 287-297. https://doi.org/10.29106/fesa.1233893