Research Article
BibTex RIS Cite

Bazı Trichoderma İzolatlarının Kavunda Kömür Çürüklüğü Hastalığına ve Bitki Gelişimine Etkisi

Year 2021, Volume: 50 Issue: 1, 17 - 22, 29.04.2021

Abstract

Bu çalışma Trichoderma izolatlarının kavunda (Cucumis melo cv. Kırkağaç-637) kömür çürüklüğü hastalığına karşı biyolojik mücadele olanaklarının değerlendirilmesi amacıyla yürütülmüştür. Macrophomina phaseolina (Tassi) Goid. kavun üretiminde önemli kayıplara neden olan toprak kaynaklı fungal patojendir. Çalışmada etkinliği önceden bilinen altı Trichoderma izolatının kavunda tohum çimlenesi, bitki gelişimi ve M. phaseolina’ya karşı etkinliği in-vitro ve in-vivo’da belirlenmiştir. In-vitro kavun tohum çimlenme testi sonucunda Trichoderma izolatlarında %80−100 tohum çimlenmesi gerçekleşirken, kontrolde ise %70 oranında olmuştur. In-vivo çalışmasında; uygulamaların bitki gelişimine olan etkisi ele alındığında, Tr28 izolatı negatif kontrole göre %77.68 bitki yaş ağırlık artışı sağlayan ve %177 oranında kök gelişimini teşvik eden en iyi izolat olmuştur. M. phaseolina ile inokule edilen bitkilerde Tr28+Mp15, Tr138B+Mp15 ve R+Mp15 uygulamaları yaş ağırlık artışında, kök ağırlık artışında ise Tr28+Mp15 ve R+Mp15, Tr138B+Mp15 ve Tr55+Mp15 uygulamaları pozitif kontrole göre en iyi etkiyi göstermiştir. 12.5 g/l Fludioxonil + 5 g/l Metalaxyl (Cebir) uygulaması ise Tr28+Mp15, Tr138B+Mp15 göre bitki gelişimi ve M. phaseolina’ya karşı etkisi daha düşük olmuştur.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

TÜBİTAK-BİDEB 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı 2019/2 Projesi

Thanks

Çalışmanın yürütülmesi için destek sağlayan TÜBİTAK’a teşekkür ederiz.

References

  • Aviles, M., Castillo, S., Borrero, C., Castillo, M.L., Zea-Bonilla, T. and Perez-Jimenez, R.M. 2009. Response of Strawberry Cultivars: ‘Camarosa’, ‘Candonga’, and ‘Ventana’ to Inoculation with Isolates of Macrophomina phaseolina. Acta Horticulturae, 842: 291–294.
  • Blancard, D., Lecoq, H. and Pitrat, M. 1994. A Colour Atlas of Cucurbit Diseases: observation, identification and control. Manson Publishing Ltd.
  • Boughalleb-M’Hamdi, N., Salem, I. B. and M’Hamdi, M. 2018. Evaluation of the Efficiency of Trichoderma, Penicillium, and Aspergillus species as Biological Control Agents Against Four Soil-borne Fungi of Melon and Watermelon. Egyptian Journal of Biological Pest Control, 28(1): p. 25.
  • Cohen, R., Tyutyunik, J., Fallik, E., Oka, Y., Tadmor, Y. and Edelstein, M. 2016. Phytopathological Evaluation of Exotic Watermelon Germplasm as a Basis for Rootstock Breeding. Scientia Horticulturae, 165: 203–210.
  • Dantas, A.M.M., Ambrósio, M.M.Q., Nascimento, S.R.C., Senhor, R.F., Cézar, M.A. and Lima, J.S.S. 2013. Incorporation of Plant Materials in the Control of Root Pathogens in Muskmelon. Revista Agro@ambiente On-line, 7(3): 338–344.
  • De Sousa Linhares, C.M., Ambrósio, M.M.Q., Castro, G., Torres, S.B., Esteras, C., de Sousa Nunes, G.H. and Pico, B. 2020. Effect of Temperature on Disease Severity of Charcoal Rot of Melons Caused by Macrophomina phaseolina: Implications for selection of resistance sources. European Journal of Plant Pathology, 158(2): 431-441.
  • Elad, Y. 2000. Biological Control of Foliar Pathogens by Means of Trichoderma harzianum and Potential Modes of Action. Crop Prot. 19: 709–714.
  • Elad, Y., Zvieli, Y. and Chet, I. 1986. Biological Control of Macrophomina phaseolina (Tassi) Goid by Trichoderma harzianum. Crop protection, 5(4): 288-292.
  • Erincik, Ö., Özdemir, Z. and Döken, M.T. 2017. Urla Yarımadasında Çeşme Kavununda Kurumalara Neden Olan Fungal Patojenlerin Yaygınlıkları ve Bulunma Oranları. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 14(2): 57-61.
  • Erzurum, K. 2000. Kavunda Macrophomina phaseolina (Tassi) Goidanich'nın Patojenisitesi Üzerinde Araştırmalar. Tarım Bilimleri Dergisi, 6(2): 45-47.
  • Etabarian, H.R. 2006. Evaluation of Trichoderma Isolates for Biological Control of Charcoal Stem Rot in Melon Caused by Macrophomina phaseolina. J. Agric. Sci. Technol. 8: 243-250.
  • FAO, 2020. Melon Production. Food and Agriculture Organization of the United Nations. (Web page: http://www.fao.org), (Erişim tarihi: Ocak 2021).
  • Fernando, D., Milagrosa, S., Francisco, C. and Francisco, M. 2018. Biostimulant Activity of Trichoderma saturnisporum in Melon (Cucumis melo). Hortscience, 53(6): 810-815.
  • Gava, C.A.T. and Menezes, M.E.L. 2012. Efficiency of Trichoderma spp. Isolates on the Control of Soil-borne Pathogens Yellow Melon in Field Conditions. Rev. Ciênc Agronômica, 43: 633–640.
  • Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. And Lorito, M., 2004. Trichoderma Species Opportunistic, Avirulent Plant Symbionts. Nat. Rev. Microbiol. 2: 34–56.
  • Jain, A., Singh, A., Singh, S. and Singh, H.B. 2013. Microbial Consortium-induced Changes in Oxidative Stress Markers in Pea Plants Challenged with Sclerotinia sclerotiorum. Journal of Plant Growth Regulation, 32(2): 388-398.
  • Karaca, İ. 1974. Sistematik Bitki Hastalıkları (Fungal Hastalıklar). Cilt IV, Ege Üniversitesi Matbaası, Bornova, İzmir, 272 s.
  • Keswani, C., Mishra, S. and Sarma, B.K. 2014. Unraveling the Efficient Application of Secondary Metabolites of Various Trichoderma. Appl. Microbiol. Biotechnol. 98: 533–544.
  • Korkom, Y. and Yıldız, A. 2020. Çilek Üretim Alanlarından İzole Edilen Trichoderma İzolatlarının Çilekte (cv. Rubygem) Macrophomina phaseolina’ya Karşı Etkinliğinin Değerlendirilmesi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 17(1): 21-28.
  • Kushwaha, C., Rani, N. and Bhagat, A.P. 2017. Nature, Dissemination and Epidemiological Consequences in Charcoal Rot Pathogen Macrophomina phaseolina. The Phytopathogen: Evol. Adaptation, Eds: Ghatak, A., and Ansar, M. Apple Academic Press, USA, 13: 978-1.
  • Manici, L.M., Caputo, F. and Cerato, C. 1995. Temperature Responses of Isolates of Macrophomina phaseolina from Different Climatic Regions of Sunflower Production in Italy. Plant Disease, 79: 934-938.
  • Martínez-Medina, A., Alguacil, M.D.M., Pascual, J.A. and Van Wees, S.C. 2014. Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants. Journal of chemical ecology, 40(7): 804-815.
  • Martínez-Medina, A., Roldán, A., Albacete, A. and Pascual, J.A. 2011. The Interaction with Arbuscular Mycorrhizal Fungi or Trichoderma harzianum Alters the Shoot Hormonal Profile in Melon Plants. Phytochemistry, 72(2-3): 223-229.
  • Mastouri, F., Björkman, T. and Harman, G.E. 2010. Seed Treatment with Trichoderma harzianum Alleviates Biotic, Abiotic, and Physiological Stresses in Germinating Seeds and Seedlings. Phytopathology, 100(11): 1213-1221.
  • Nascimento, P.G., Ambrósio, M.M., Freitas, F.C., Cruz, B.L., Dantas, A.M., Júnior, R.S. and da Silva, W.L. 2018. Incidence of Root Rot of Muskmelon in Different Soil Management Practices. European Journal of Plant Pathology, 152(2): 433-446.
  • Özbahçe, A., Tarı, A.F., Yücel, S. and Okur, O. 2014. Kavunda Solgunluk ve Kök Çürüklüğü ile Mücadelede Kemigasyon. Bahçe, 43(1-2): 29-39.
  • Özbay, N., Ergun, M. and Demirkıran, A.R. 2018. Ticari Mikrobiyal Gübre Sim Derma(Trichoderma harzianum, Kuen 1585) Uygulamasının Ispanakta Çimlenme, Gelişme ve Verim Üzerine Etkisi. Türk Tarım ve Doğa Bilimleri Dergisi, 5(4): 482-491.
  • Shoresh, M., Yedidia, I. and Chet, I., 2005. Involvement of Jasmonic acid/Ethylene Signaling Pathway in the Systemic Resistance Induced in Cucumber by Trichoderma asperellum T203. Biological Control, 95: 76–84.
  • Singh, A., Shukla, N., Kabadwal, B.C., Tewari, A.K. and Kumar, J. 2018. Review on Plant-Trichoderma-Pathogen Interaction. International Journal of Current Microbiology and Applied Sciences, 7(2): 2382-2397.
  • Sivritepe, H.Ö., Şentürk, B. and Teoman, S. 2015. Biber Tohumlarında Yapılan Organik Priming ve Kurutma Uygulamaları Fide Kalitesi ve Performansını İyileştirmektedir. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 29(2): 83- 94.
  • Su, G., Suh, S.O., Schneider, R.W. and Russin, J.S. 2001. Host Specialization in the Charcoal Rot Fungus, Macrophomina phaseolina. Phytopathology, 91: 120–126.
  • Tezcan, H. and Yıldız, M. 1993. Investigations on the Collapse of Melon Plants Caused by Soilborne Fungi in Turkey. Proceedings of the 6th International Congress of Plant Pathology, 28 July - 6 August 1993, Montreal, p. 143.
  • Tüzel, Y. and Gül, A. 2008. Seracılıkta Yeni Gelişmeler. Ege Tarımsal Araş. Ens. Yayın, 133: 145-160.
  • Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Barbetti, M.J., Li, H., Woo, S.L. and Lorito, M. 2008. A Novel Role for Trichoderma Secondary Metabolites in the Interactions with Plants. Physiol. Mol. Plant Pathol. 72: 80–86.
  • Yıldız, M., Yıldız, F., Kinay, P. and Şenyuz, G. 1994. The Role of Macrophomina phaseolina (Tassi) Goid in the Diseases of Vine Decline of Melon in Aegean Region of Turkey. In 9th Congress of The Mediterranean Phytopathological Union, September 18-24, 1994, Kuşadası-Aydin, Turkey, 171-173.

Effects of Some Trichoderma Isolates Against Charcoal Rot Disease of Melon and Plant Growth

Year 2021, Volume: 50 Issue: 1, 17 - 22, 29.04.2021

Abstract

This study was aimed to evaluate the biological control effectiveness of Trichoderma isolates against charcoal rot disease in melon (Cucumis melo cv. Kırkağaç-637). Macrophomina phaseolina (Tassi) Goid. is soilborne fungal pathogen that causes for considerable damages in melon production. In the study, the effectiveness of six previously known Trichoderma isolates on seed germination, plant growth and against M. phaseolina of melon in in-vitro and in-vivo was determined. As a result of the seed germination of melon tests carried out in-vitro condition, the seed germination occurred 80−100% on Trichoderma isolates, while 70% on control plates. In in-vivo study, when growth of plant was compared in treatments, the isolate of Tr28 was encouraged the fresh weight increase (77.68%) and root growth (177%) in comparison with the negative control. When Tr28+Mp15, Tr138B+Mp15 and R+Mp15 treatments increased the fresh weight, Tr28+Mp15, R+Mp15, Tr138B+Mp15, Tr55+Mp15 isolates increased the root weight in plants inoculated with M. phaseolina, and these applications showed the best effect compared to the positive control. The plant growth and effectiveness on M. phaseolina in 12.5 g/l Fludioxonil + 5 g/l Metalaxyl (Cebir) treatment, it was lower than Tr28+Mp15, Tr138B+Mp15 treatments.

Project Number

TÜBİTAK-BİDEB 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı 2019/2 Projesi

References

  • Aviles, M., Castillo, S., Borrero, C., Castillo, M.L., Zea-Bonilla, T. and Perez-Jimenez, R.M. 2009. Response of Strawberry Cultivars: ‘Camarosa’, ‘Candonga’, and ‘Ventana’ to Inoculation with Isolates of Macrophomina phaseolina. Acta Horticulturae, 842: 291–294.
  • Blancard, D., Lecoq, H. and Pitrat, M. 1994. A Colour Atlas of Cucurbit Diseases: observation, identification and control. Manson Publishing Ltd.
  • Boughalleb-M’Hamdi, N., Salem, I. B. and M’Hamdi, M. 2018. Evaluation of the Efficiency of Trichoderma, Penicillium, and Aspergillus species as Biological Control Agents Against Four Soil-borne Fungi of Melon and Watermelon. Egyptian Journal of Biological Pest Control, 28(1): p. 25.
  • Cohen, R., Tyutyunik, J., Fallik, E., Oka, Y., Tadmor, Y. and Edelstein, M. 2016. Phytopathological Evaluation of Exotic Watermelon Germplasm as a Basis for Rootstock Breeding. Scientia Horticulturae, 165: 203–210.
  • Dantas, A.M.M., Ambrósio, M.M.Q., Nascimento, S.R.C., Senhor, R.F., Cézar, M.A. and Lima, J.S.S. 2013. Incorporation of Plant Materials in the Control of Root Pathogens in Muskmelon. Revista Agro@ambiente On-line, 7(3): 338–344.
  • De Sousa Linhares, C.M., Ambrósio, M.M.Q., Castro, G., Torres, S.B., Esteras, C., de Sousa Nunes, G.H. and Pico, B. 2020. Effect of Temperature on Disease Severity of Charcoal Rot of Melons Caused by Macrophomina phaseolina: Implications for selection of resistance sources. European Journal of Plant Pathology, 158(2): 431-441.
  • Elad, Y. 2000. Biological Control of Foliar Pathogens by Means of Trichoderma harzianum and Potential Modes of Action. Crop Prot. 19: 709–714.
  • Elad, Y., Zvieli, Y. and Chet, I. 1986. Biological Control of Macrophomina phaseolina (Tassi) Goid by Trichoderma harzianum. Crop protection, 5(4): 288-292.
  • Erincik, Ö., Özdemir, Z. and Döken, M.T. 2017. Urla Yarımadasında Çeşme Kavununda Kurumalara Neden Olan Fungal Patojenlerin Yaygınlıkları ve Bulunma Oranları. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 14(2): 57-61.
  • Erzurum, K. 2000. Kavunda Macrophomina phaseolina (Tassi) Goidanich'nın Patojenisitesi Üzerinde Araştırmalar. Tarım Bilimleri Dergisi, 6(2): 45-47.
  • Etabarian, H.R. 2006. Evaluation of Trichoderma Isolates for Biological Control of Charcoal Stem Rot in Melon Caused by Macrophomina phaseolina. J. Agric. Sci. Technol. 8: 243-250.
  • FAO, 2020. Melon Production. Food and Agriculture Organization of the United Nations. (Web page: http://www.fao.org), (Erişim tarihi: Ocak 2021).
  • Fernando, D., Milagrosa, S., Francisco, C. and Francisco, M. 2018. Biostimulant Activity of Trichoderma saturnisporum in Melon (Cucumis melo). Hortscience, 53(6): 810-815.
  • Gava, C.A.T. and Menezes, M.E.L. 2012. Efficiency of Trichoderma spp. Isolates on the Control of Soil-borne Pathogens Yellow Melon in Field Conditions. Rev. Ciênc Agronômica, 43: 633–640.
  • Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. And Lorito, M., 2004. Trichoderma Species Opportunistic, Avirulent Plant Symbionts. Nat. Rev. Microbiol. 2: 34–56.
  • Jain, A., Singh, A., Singh, S. and Singh, H.B. 2013. Microbial Consortium-induced Changes in Oxidative Stress Markers in Pea Plants Challenged with Sclerotinia sclerotiorum. Journal of Plant Growth Regulation, 32(2): 388-398.
  • Karaca, İ. 1974. Sistematik Bitki Hastalıkları (Fungal Hastalıklar). Cilt IV, Ege Üniversitesi Matbaası, Bornova, İzmir, 272 s.
  • Keswani, C., Mishra, S. and Sarma, B.K. 2014. Unraveling the Efficient Application of Secondary Metabolites of Various Trichoderma. Appl. Microbiol. Biotechnol. 98: 533–544.
  • Korkom, Y. and Yıldız, A. 2020. Çilek Üretim Alanlarından İzole Edilen Trichoderma İzolatlarının Çilekte (cv. Rubygem) Macrophomina phaseolina’ya Karşı Etkinliğinin Değerlendirilmesi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 17(1): 21-28.
  • Kushwaha, C., Rani, N. and Bhagat, A.P. 2017. Nature, Dissemination and Epidemiological Consequences in Charcoal Rot Pathogen Macrophomina phaseolina. The Phytopathogen: Evol. Adaptation, Eds: Ghatak, A., and Ansar, M. Apple Academic Press, USA, 13: 978-1.
  • Manici, L.M., Caputo, F. and Cerato, C. 1995. Temperature Responses of Isolates of Macrophomina phaseolina from Different Climatic Regions of Sunflower Production in Italy. Plant Disease, 79: 934-938.
  • Martínez-Medina, A., Alguacil, M.D.M., Pascual, J.A. and Van Wees, S.C. 2014. Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants. Journal of chemical ecology, 40(7): 804-815.
  • Martínez-Medina, A., Roldán, A., Albacete, A. and Pascual, J.A. 2011. The Interaction with Arbuscular Mycorrhizal Fungi or Trichoderma harzianum Alters the Shoot Hormonal Profile in Melon Plants. Phytochemistry, 72(2-3): 223-229.
  • Mastouri, F., Björkman, T. and Harman, G.E. 2010. Seed Treatment with Trichoderma harzianum Alleviates Biotic, Abiotic, and Physiological Stresses in Germinating Seeds and Seedlings. Phytopathology, 100(11): 1213-1221.
  • Nascimento, P.G., Ambrósio, M.M., Freitas, F.C., Cruz, B.L., Dantas, A.M., Júnior, R.S. and da Silva, W.L. 2018. Incidence of Root Rot of Muskmelon in Different Soil Management Practices. European Journal of Plant Pathology, 152(2): 433-446.
  • Özbahçe, A., Tarı, A.F., Yücel, S. and Okur, O. 2014. Kavunda Solgunluk ve Kök Çürüklüğü ile Mücadelede Kemigasyon. Bahçe, 43(1-2): 29-39.
  • Özbay, N., Ergun, M. and Demirkıran, A.R. 2018. Ticari Mikrobiyal Gübre Sim Derma(Trichoderma harzianum, Kuen 1585) Uygulamasının Ispanakta Çimlenme, Gelişme ve Verim Üzerine Etkisi. Türk Tarım ve Doğa Bilimleri Dergisi, 5(4): 482-491.
  • Shoresh, M., Yedidia, I. and Chet, I., 2005. Involvement of Jasmonic acid/Ethylene Signaling Pathway in the Systemic Resistance Induced in Cucumber by Trichoderma asperellum T203. Biological Control, 95: 76–84.
  • Singh, A., Shukla, N., Kabadwal, B.C., Tewari, A.K. and Kumar, J. 2018. Review on Plant-Trichoderma-Pathogen Interaction. International Journal of Current Microbiology and Applied Sciences, 7(2): 2382-2397.
  • Sivritepe, H.Ö., Şentürk, B. and Teoman, S. 2015. Biber Tohumlarında Yapılan Organik Priming ve Kurutma Uygulamaları Fide Kalitesi ve Performansını İyileştirmektedir. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 29(2): 83- 94.
  • Su, G., Suh, S.O., Schneider, R.W. and Russin, J.S. 2001. Host Specialization in the Charcoal Rot Fungus, Macrophomina phaseolina. Phytopathology, 91: 120–126.
  • Tezcan, H. and Yıldız, M. 1993. Investigations on the Collapse of Melon Plants Caused by Soilborne Fungi in Turkey. Proceedings of the 6th International Congress of Plant Pathology, 28 July - 6 August 1993, Montreal, p. 143.
  • Tüzel, Y. and Gül, A. 2008. Seracılıkta Yeni Gelişmeler. Ege Tarımsal Araş. Ens. Yayın, 133: 145-160.
  • Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Barbetti, M.J., Li, H., Woo, S.L. and Lorito, M. 2008. A Novel Role for Trichoderma Secondary Metabolites in the Interactions with Plants. Physiol. Mol. Plant Pathol. 72: 80–86.
  • Yıldız, M., Yıldız, F., Kinay, P. and Şenyuz, G. 1994. The Role of Macrophomina phaseolina (Tassi) Goid in the Diseases of Vine Decline of Melon in Aegean Region of Turkey. In 9th Congress of The Mediterranean Phytopathological Union, September 18-24, 1994, Kuşadası-Aydin, Turkey, 171-173.
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Uğur Bayrak This is me 0000-0002-0854-9466

Yunus Korkom 0000-0001-5859-9026

Ayhan Yıldız 0000-0001-9443-2362

Project Number TÜBİTAK-BİDEB 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı 2019/2 Projesi
Publication Date April 29, 2021
Published in Issue Year 2021 Volume: 50 Issue: 1

Cite

APA Bayrak, U., Korkom, Y., & Yıldız, A. (2021). Bazı Trichoderma İzolatlarının Kavunda Kömür Çürüklüğü Hastalığına ve Bitki Gelişimine Etkisi. The Journal of Turkish Phytopathology, 50(1), 17-22.
AMA Bayrak U, Korkom Y, Yıldız A. Bazı Trichoderma İzolatlarının Kavunda Kömür Çürüklüğü Hastalığına ve Bitki Gelişimine Etkisi. The Journal of Turkish Phytopathology. April 2021;50(1):17-22.
Chicago Bayrak, Uğur, Yunus Korkom, and Ayhan Yıldız. “Bazı Trichoderma İzolatlarının Kavunda Kömür Çürüklüğü Hastalığına Ve Bitki Gelişimine Etkisi”. The Journal of Turkish Phytopathology 50, no. 1 (April 2021): 17-22.
EndNote Bayrak U, Korkom Y, Yıldız A (April 1, 2021) Bazı Trichoderma İzolatlarının Kavunda Kömür Çürüklüğü Hastalığına ve Bitki Gelişimine Etkisi. The Journal of Turkish Phytopathology 50 1 17–22.
IEEE U. Bayrak, Y. Korkom, and A. Yıldız, “Bazı Trichoderma İzolatlarının Kavunda Kömür Çürüklüğü Hastalığına ve Bitki Gelişimine Etkisi”, The Journal of Turkish Phytopathology, vol. 50, no. 1, pp. 17–22, 2021.
ISNAD Bayrak, Uğur et al. “Bazı Trichoderma İzolatlarının Kavunda Kömür Çürüklüğü Hastalığına Ve Bitki Gelişimine Etkisi”. The Journal of Turkish Phytopathology 50/1 (April 2021), 17-22.
JAMA Bayrak U, Korkom Y, Yıldız A. Bazı Trichoderma İzolatlarının Kavunda Kömür Çürüklüğü Hastalığına ve Bitki Gelişimine Etkisi. The Journal of Turkish Phytopathology. 2021;50:17–22.
MLA Bayrak, Uğur et al. “Bazı Trichoderma İzolatlarının Kavunda Kömür Çürüklüğü Hastalığına Ve Bitki Gelişimine Etkisi”. The Journal of Turkish Phytopathology, vol. 50, no. 1, 2021, pp. 17-22.
Vancouver Bayrak U, Korkom Y, Yıldız A. Bazı Trichoderma İzolatlarının Kavunda Kömür Çürüklüğü Hastalığına ve Bitki Gelişimine Etkisi. The Journal of Turkish Phytopathology. 2021;50(1):17-22.