Research Article
BibTex RIS Cite

Preparation and characterization of conductive blends of polyaniline with polyphenol red

Year 2023, Volume: 4 Issue: 3, 118 - 124, 30.12.2023
https://doi.org/10.51753/flsrt.1312803

Abstract

Polymers are widely employed in biomedical applications, pharmaceutical product formulation, and drug delivery systems. Since every polymer has its own distinct properties, polymer blends will have novel chemical and physical properties. Functionally, the purpose of blending polymers is to improve, customize, or maximize material performance. In this study, polyaniline and polyphenol red polymer mixtures were prepared electrochemically and characterized with XPS imaging and SEM whether their distribution was homogeneous. The mixture of aniline and phenol red was deposited glassy carbon electrode (GCE) surface using the cyclic voltammetry technique in the potential range of -0.80 V to 2.00 V with 50 mV/s scan rate for 25 cycles. The phase separation of the two polymers was demonstrated by a combination of spectroscopic imaging and microscopy. For this purpose, the X-ray spot size and step number were set to 50μm. 1 x 1 mm2 area scan of the polymer mixtures was performed, and spectra were obtained at each pixel in an array of 20 x 20 pixels. Chemical imaging was obtained by applying Principal Component Analysis (PCA) to collected XPS survey spectra. For the morphological characterization, scanning electron microscopy (SEM) was employed, and images were obtained at magnifications of 5000 x. The results obtained in the mixtures prepared with 5%, 10% and 25% were better compared to the mixture prepared with 50% polyphenol red. Since the X-ray spot size is limited, the desired image resolution could not be obtained. It was shown that XPS imaging studies could also be used for examining the distribution of different and unknown polymer mixtures together with SEM.

Supporting Institution

No support

Project Number

No project

References

  • Ahmadkhani, L., Mostafavi, E., Ghasemali, S., Baghban, R., Pazoki-Toroudi, H., Davaran, S., ... & Akbarzadeh, A. (2019). Development and characterization of a novel conductive polyaniline-g-polystyrene/Fe3O4 nanocomposite for the treatment of cancer. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 873-881.
  • Barker, M., Nicolini, T., Al Yaman, Y., Thuau, D., Siscan, O., Ramachandran, S., ... & Stingelin, N. (2023). Conjugated polymer blends for faster organic mixed conductors. Materials Horizons, 10(1), 248-256.
  • Boomi, P., Prabu, H. G., Manisankar, P., & Ravikumar, S. (2014). Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite. Applied Surface Science, 300, 66-72.
  • Erdogan, A. (2022). Analysis and chemical imaging of blue inks for the investigation of document forgery by XPS. Microchemical Journal, 183, 108062.
  • Erdogan, A., Akturk, M., & Dursun, Z. (2019). Chemical mapping of graphene-based material with X-ray Photoelectron Spectroscopy (XPS) using principal component analysis (PCA). Erzincan University Journal of Science and Technology, 12(2), 820-832.
  • Erdogan, A., Esen, M., & Simpson, R. (2020). Chemical imaging of human fingermark by X‐ray Photoelectron Spectroscopy (XPS). Journal of Forensic Sciences, 65(5), 1730-1735.
  • Ghasemiyeh, P., & Mohammadi-Samani, S. (2021). Polymers blending as release modulating tool in drug delivery. Frontiers in Materials, 8, 752813.
  • Ghovvati, M., Guo, L., Bolouri, K., & Kaneko, N. (2023). Advances in electroconductive polymers for biomedical sector: Structure and properties. Materials Chemistry Horizons, 2(2), 125-137.
  • Gizdavic-Nikolaidis, M., Travas-Sejdic, J., Bowmaker, G. A., Cooney, R. P., & Kilmartin, P. A. (2004). Conducting polymers as free radical scavengers. Synthetic Metals, 140(2-3), 225-232.
  • Hand, R. L., & Nelson, R. F. (1974). Anodic oxidation pathways of N-alkylanilines. Journal of the American Chemical Society, 96(3), 850-860.
  • Isakova, A., Indenbom, A., Yakobson, O., Gribkova, O., Brevnov, V., Garina, E., & Vannikov, A. (2016). The influence of the surface structure of polyaniline films on the adsorption of influenza A viruses and antibodies to them. Protection of Metals and Physical Chemistry of Surfaces, 52, 677-683.
  • Jones, S., Martin, G., Royall, P., & Brown, M. (2005). Biocompatible polymer blends: Effects of physical processing on the molecular interaction of poly (vinyl alcohol) and poly (vinyl pyrrolidone). Journal of Applied Polymer Science, 98(5), 2290-2299.
  • Koluacik, E., Karabiberoglu, S. U., & Dursun, Z. (2018). Electrochemical determination of serotonin using pre‐treated multi‐walled carbon nanotube‐polyaniline composite electrode. Electroanalysis, 30(12), 2977-2987.
  • Li, S., Jasim, A., Zhao, W., Fu, L., Ullah, M. W., Shi, Z., & Yang, G. (2018). Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Materials & Manufacturing, 1(28), 41-49.
  • Li, X., Wang, Y., Yang, X., Chen, J., Fu, H., & Cheng, T. (2012). Conducting polymers in environmental analysis. TrAC Trends in Analytical Chemistry, 39, 163-179.
  • Liang, X., Govindaraju, S., & Yun, K. (2018). Dual applicability of polyaniline coated gold nanorods: a study of antibacterial and redox activity. BioChip Journal, 12, 137-145.
  • Michler, G. H., & Lebek, W. (2016). Electron microscopy of polymers. Polymer Morphology: Principles, Characterization, and Processing, 37-53.
  • Minisy, I. M., Salahuddin, N. A., & Ayad, M. M. (2021). In vitro release study of ketoprofen-loaded chitosan/polyaniline nanofibers. Polymer Bulletin, 78(10), 5609-5622.
  • Morais, J. P. L., Bernardino, D. V., da Silva Batista, B., Pereira, W. O., Amaral, F. M. B., Branca, M. C. M. P., ... & Macêdo, A. A. M. (2023). Conductive polymer blend based on polyaniline and galactomannan: Optical and electrical properties. Synthetic Metals, 295, 117346.
  • Morgan, A., Babu, D., Reiz, B., Whittal, R., Suh, L. Y., & Siraki, A. G. (2019). Caution for the routine use of phenol red-It is more than just a pH indicator. Chemico-Biological Interactions, 310, 108739.
  • Nasir, A., Raza, A., Tahir, M., Yasin, T., Nadeem, M., & Ahmad, B. (2023). Synthesis and study of polyaniline grafted graphene oxide nanohybrids. Materials Research Bulletin, 157, 112006.
  • Niu, L., Li, Q., Wei, F., Chen, X., & Wang, H. (2003). Formation optimization of platinum-modified polyaniline films for the electrocatalytic oxidation of methanol. Synthetic Metals, 139(2), 271-276.
  • Ogundele, O., Oyegoke, D., & Anaun, T. (2023). Exploring the potential and challenges of electro-chemical processes for sustainable waste water remediation and treatment. Acadlore Transactions on Geosciences, 2(2), 80-93.
  • Pina, C. D., & Falletta, E. (2022). Advances in polyaniline for biomedical applications. Current Medicinal Chemistry, 29(2), 329-357.
  • Pournaghi-Azar, M., & Habibi, B. (2007). Electropolymerization of aniline in acid media on the bare and chemically pre-treated aluminum electrodes: A comparative characterization of the polyaniline deposited electrodes. Electrochimica Acta, 52(12), 4222-4230.
  • Riaz, U., Singh, N., Rashnas Srambikal, F., & Fatima, S. (2023). A review on synthesis and applications of polyaniline and polypyrrole hydrogels. Polymer Bulletin, 80(2), 1085-1116.
  • Shoaie, N., Daneshpour, M., Azimzadeh, M., Mahshid, S., Khoshfetrat, S. M., Jahanpeyma, F., ... & Foruzandeh, M. (2019). Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: A review on recent advances. Microchimica Acta, 186, 1-29.
  • Shokrollahi, P., Omidi, Y., Cubeddu, L. X., & Omidian, H. (2023). Conductive polymers for cardiac tissue engineering and regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 111, 1979–1995.
  • Yazie, N., Worku, D., Gabbiye, N., Alemayehu, A., Getahun, Z., & Dagnew, M. (2023). Development of polymer blend electrolytes for battery systems: recent progress, challenges, and future outlook. Materials for Renewable and Sustainable Energy, 1-22.
  • You, C., Wu, H., Wang, M., Wang, S., Shi, T., Luo, Y., ... & Zhu, J. (2017). A strategy for photothermal conversion of polymeric nanoparticles by polyaniline for smart control of targeted drug delivery. Nanotechnology, 28(16), 165102.
  • Zhao, S., Huang, L., Tong, T., Zhang, W., Wang, Z., Wang, J., & Wang, S. (2017). Antifouling and antibacterial behavior of polyethersulfone membrane incorporating polyaniline@ silver nanocomposites. Environmental Science: Water Research & Technology, 3(4), 710-719.
Year 2023, Volume: 4 Issue: 3, 118 - 124, 30.12.2023
https://doi.org/10.51753/flsrt.1312803

Abstract

Project Number

No project

References

  • Ahmadkhani, L., Mostafavi, E., Ghasemali, S., Baghban, R., Pazoki-Toroudi, H., Davaran, S., ... & Akbarzadeh, A. (2019). Development and characterization of a novel conductive polyaniline-g-polystyrene/Fe3O4 nanocomposite for the treatment of cancer. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 873-881.
  • Barker, M., Nicolini, T., Al Yaman, Y., Thuau, D., Siscan, O., Ramachandran, S., ... & Stingelin, N. (2023). Conjugated polymer blends for faster organic mixed conductors. Materials Horizons, 10(1), 248-256.
  • Boomi, P., Prabu, H. G., Manisankar, P., & Ravikumar, S. (2014). Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite. Applied Surface Science, 300, 66-72.
  • Erdogan, A. (2022). Analysis and chemical imaging of blue inks for the investigation of document forgery by XPS. Microchemical Journal, 183, 108062.
  • Erdogan, A., Akturk, M., & Dursun, Z. (2019). Chemical mapping of graphene-based material with X-ray Photoelectron Spectroscopy (XPS) using principal component analysis (PCA). Erzincan University Journal of Science and Technology, 12(2), 820-832.
  • Erdogan, A., Esen, M., & Simpson, R. (2020). Chemical imaging of human fingermark by X‐ray Photoelectron Spectroscopy (XPS). Journal of Forensic Sciences, 65(5), 1730-1735.
  • Ghasemiyeh, P., & Mohammadi-Samani, S. (2021). Polymers blending as release modulating tool in drug delivery. Frontiers in Materials, 8, 752813.
  • Ghovvati, M., Guo, L., Bolouri, K., & Kaneko, N. (2023). Advances in electroconductive polymers for biomedical sector: Structure and properties. Materials Chemistry Horizons, 2(2), 125-137.
  • Gizdavic-Nikolaidis, M., Travas-Sejdic, J., Bowmaker, G. A., Cooney, R. P., & Kilmartin, P. A. (2004). Conducting polymers as free radical scavengers. Synthetic Metals, 140(2-3), 225-232.
  • Hand, R. L., & Nelson, R. F. (1974). Anodic oxidation pathways of N-alkylanilines. Journal of the American Chemical Society, 96(3), 850-860.
  • Isakova, A., Indenbom, A., Yakobson, O., Gribkova, O., Brevnov, V., Garina, E., & Vannikov, A. (2016). The influence of the surface structure of polyaniline films on the adsorption of influenza A viruses and antibodies to them. Protection of Metals and Physical Chemistry of Surfaces, 52, 677-683.
  • Jones, S., Martin, G., Royall, P., & Brown, M. (2005). Biocompatible polymer blends: Effects of physical processing on the molecular interaction of poly (vinyl alcohol) and poly (vinyl pyrrolidone). Journal of Applied Polymer Science, 98(5), 2290-2299.
  • Koluacik, E., Karabiberoglu, S. U., & Dursun, Z. (2018). Electrochemical determination of serotonin using pre‐treated multi‐walled carbon nanotube‐polyaniline composite electrode. Electroanalysis, 30(12), 2977-2987.
  • Li, S., Jasim, A., Zhao, W., Fu, L., Ullah, M. W., Shi, Z., & Yang, G. (2018). Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Materials & Manufacturing, 1(28), 41-49.
  • Li, X., Wang, Y., Yang, X., Chen, J., Fu, H., & Cheng, T. (2012). Conducting polymers in environmental analysis. TrAC Trends in Analytical Chemistry, 39, 163-179.
  • Liang, X., Govindaraju, S., & Yun, K. (2018). Dual applicability of polyaniline coated gold nanorods: a study of antibacterial and redox activity. BioChip Journal, 12, 137-145.
  • Michler, G. H., & Lebek, W. (2016). Electron microscopy of polymers. Polymer Morphology: Principles, Characterization, and Processing, 37-53.
  • Minisy, I. M., Salahuddin, N. A., & Ayad, M. M. (2021). In vitro release study of ketoprofen-loaded chitosan/polyaniline nanofibers. Polymer Bulletin, 78(10), 5609-5622.
  • Morais, J. P. L., Bernardino, D. V., da Silva Batista, B., Pereira, W. O., Amaral, F. M. B., Branca, M. C. M. P., ... & Macêdo, A. A. M. (2023). Conductive polymer blend based on polyaniline and galactomannan: Optical and electrical properties. Synthetic Metals, 295, 117346.
  • Morgan, A., Babu, D., Reiz, B., Whittal, R., Suh, L. Y., & Siraki, A. G. (2019). Caution for the routine use of phenol red-It is more than just a pH indicator. Chemico-Biological Interactions, 310, 108739.
  • Nasir, A., Raza, A., Tahir, M., Yasin, T., Nadeem, M., & Ahmad, B. (2023). Synthesis and study of polyaniline grafted graphene oxide nanohybrids. Materials Research Bulletin, 157, 112006.
  • Niu, L., Li, Q., Wei, F., Chen, X., & Wang, H. (2003). Formation optimization of platinum-modified polyaniline films for the electrocatalytic oxidation of methanol. Synthetic Metals, 139(2), 271-276.
  • Ogundele, O., Oyegoke, D., & Anaun, T. (2023). Exploring the potential and challenges of electro-chemical processes for sustainable waste water remediation and treatment. Acadlore Transactions on Geosciences, 2(2), 80-93.
  • Pina, C. D., & Falletta, E. (2022). Advances in polyaniline for biomedical applications. Current Medicinal Chemistry, 29(2), 329-357.
  • Pournaghi-Azar, M., & Habibi, B. (2007). Electropolymerization of aniline in acid media on the bare and chemically pre-treated aluminum electrodes: A comparative characterization of the polyaniline deposited electrodes. Electrochimica Acta, 52(12), 4222-4230.
  • Riaz, U., Singh, N., Rashnas Srambikal, F., & Fatima, S. (2023). A review on synthesis and applications of polyaniline and polypyrrole hydrogels. Polymer Bulletin, 80(2), 1085-1116.
  • Shoaie, N., Daneshpour, M., Azimzadeh, M., Mahshid, S., Khoshfetrat, S. M., Jahanpeyma, F., ... & Foruzandeh, M. (2019). Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: A review on recent advances. Microchimica Acta, 186, 1-29.
  • Shokrollahi, P., Omidi, Y., Cubeddu, L. X., & Omidian, H. (2023). Conductive polymers for cardiac tissue engineering and regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 111, 1979–1995.
  • Yazie, N., Worku, D., Gabbiye, N., Alemayehu, A., Getahun, Z., & Dagnew, M. (2023). Development of polymer blend electrolytes for battery systems: recent progress, challenges, and future outlook. Materials for Renewable and Sustainable Energy, 1-22.
  • You, C., Wu, H., Wang, M., Wang, S., Shi, T., Luo, Y., ... & Zhu, J. (2017). A strategy for photothermal conversion of polymeric nanoparticles by polyaniline for smart control of targeted drug delivery. Nanotechnology, 28(16), 165102.
  • Zhao, S., Huang, L., Tong, T., Zhang, W., Wang, Z., Wang, J., & Wang, S. (2017). Antifouling and antibacterial behavior of polyethersulfone membrane incorporating polyaniline@ silver nanocomposites. Environmental Science: Water Research & Technology, 3(4), 710-719.
There are 31 citations in total.

Details

Primary Language English
Subjects Nonlinear Optics and Spectroscopy, Electroanalytical Chemistry, Instrumental Methods, Molecular Imaging, Physical Properties of Materials, Polymerisation Mechanisms, Nanoscale Characterisation
Journal Section Research Articles
Authors

Ayşegül Erdoğan 0000-0002-3174-7970

Merve Aktürk 0000-0003-0304-1062

Zekeriya Dursun 0000-0001-8887-3356

Project Number No project
Publication Date December 30, 2023
Submission Date June 11, 2023
Published in Issue Year 2023 Volume: 4 Issue: 3

Cite

APA Erdoğan, A., Aktürk, M., & Dursun, Z. (2023). Preparation and characterization of conductive blends of polyaniline with polyphenol red. Frontiers in Life Sciences and Related Technologies, 4(3), 118-124. https://doi.org/10.51753/flsrt.1312803

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.