Editorial
BibTex RIS Cite

Geçmişten günümüze potansiyel hammadde kaynağı: Likenler

Year 2023, Current Perspectives in Modern Biology: Exploring Diverse Frontiers, Paradigms, and Novel Horizons, 38 - 44, 31.12.2023
https://doi.org/10.51753/flsrt.1402906

Abstract

Likenler içerdikleri 1000’den fazla metabolit sayesinde antioksidan, antimikrobiyal, antifungal, insektisidal, antikanser ve boyar madde potansiyelleri gibi biyolojik etkinliklerinden dolayı çeşitli sektörlerde bir hammadde kaynağı olarak tercih edilmektedir. Yüzlerce yıldır etnofarmakolojik olarak birçok hastalığın tedavisinde halk arasında kullanılmasının yanı sıra günümüzde hala likenlerin ilaç potansiyelleri araştırılmaya devam edilmektedir. Likenlerin kendilerine has aromatik yapısı ve besleyici özellikleri nedeniyle baharat, ekmek-pasta ve çay olarak tüketimleri gıda sektöründe uzun yıllardır devam etmektedir. Ekonomik anlamda en önemli kullanım alanlarından biri olan boyar madde içerikleri nedeniyle likenler başta tekstil sektörü olmak üzere birçok sektörde tercih edilmektedir. Ayrıca tarımsal alanda ise fitopatojenlere karşı insektisidal ve antifungal etkinliğe sahip oldukları bilinmektedir. Likenlerin ve içerdikleri metabolitlerin yalnızca bir kısmının etkinlikleri biliniyor olsa da, tüm özellikleri hala tam olarak aydınlatılmamıştır. Bu bağlamda, liken ve etken maddelerinin biyoaktivitelerinin gelecekte açığa çıkartılmasıyla birlikte, birçok sektörde potansiyel hammadde olarak kullanılması öngörülmektedir.

References

  • Abdallah, E. M. (2019). Evaluation of the antimicrobial activity of a lichen used as a spice (Platismatia glauca). Advancements in Life Sciences, 6(3), 110-115.
  • Airaksinen, M. M., Peura, P., Ala-Fossi-Salokangas, L., Antere, S., Lukkarinen, J., Saikkonen, M., & Stenbäck, F. (1986). Toxicity of plant material used as emergency food during famines in Finland. Journal of Ethnopharmacology, 18(3), 273-296.
  • Akpinar, A., Cansev, A., & Isleyen, M. (2021). Effects of the lichen Peltigera canina on Cucurbita pepo spp. pepo grown in soil contaminated by DDTs. Environmental Science and Pollution Research, 28, 14576-14585.
  • Aoussar, N., Manzali, R., Nattah, I., Rhallabi, N., Vasiljevic, P., Bouksaim, M., ... & Mellouki, F. (2017). Chemical composition and antioxidant activity of two lichens species (Pseudevernia furfuracea L and Evernia prunastri L) collected from Morocco. J Mater Environ Sci, 8(6), 1968-1976.
  • Arun, A. B., Girish, S., & Ravi, L. (2023). Photobiont symbiotic association in lichens. In Microbial Symbionts (pp. 161-175). Academic Press.
  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature reviews Drug discovery, 20(3), 200-216.
  • Bhat, N. B., Das, S., Sridevi, B. V., Nayaka, S., Birangal, S. R., Shenoy, G. G., & Joseph, A. (2023). Molecular docking and dynamics supported investigation of antiviral activity of Lichen metabolites of Roccella montagnei: An in silico and in vitro study. Journal of Biomolecular Structure and Dynamics, 1-14.
  • Cansaran-Duman, D., & Aras, S. (2015). Lichens as an alternative biosorbent: a review. Phytoremediation: Management of Environmental Contaminants, Volume 2, 233-241.
  • Cox, P. A., Banack, S. A., Murch, S. J., Rasmussen, U., Tien, G., Bidigare, R. R., ... & Bergman, B. (2005). Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proceedings of the National Academy of Sciences, 102(14), 5074-5078.
  • Cui, G.-Y.; Duan, H. Study on edible lichens in China. Jiangsu Agric. Res. 2000, 21, 59–62.
  • Culberson, W. L. (2002). Lichen Flora of the Greater Sonoran Desert Region—Volume 1. The Bryologist, 105(4), 725-725.
  • Cobanoglu, G. (2021). Geçmişten Bugüne İstanbul Liken Çalışmaları Üzerine Bir Derleme. Bağbahçe Bilim Dergisi, 8(1), 259-266.
  • Dawes, E. A. (2017). Carbon metabolism. In Continuous cultures of cells (pp. 1-38). CRC Press.
  • Desmaretes, L., Millot, M., Chollet-Krugler, M., Boustie, J., Camuzet, C., François, N., ... & Séron, K. (2023). Lichen or Associated Micro-Organism Compounds Are Active against Human Coronaviruses. Viruses, 15(9), 1859.
  • Devkota, S., Chaudhary, R. P., Werth, S., & Scheidegger, C. (2017). Indigenous knowledge and use of lichens by the lichenophilic communities of the Nepal Himalaya. Journal of Ethnobiology and Ethnomedicine, 13(1), 1-10.
  • Dhaouadi, S., Khalloufi, N., Ayati, K., Ayeb, N., & Béjaoui, M. (2022). Use of lichen species for air pollution biomonitoring: Case of Dar-Chichou forest (Cap-Bon, North-East Tunisia). Environmental and Sustainability Indicators, 16, 100211.
  • dos Santos Lima, D. N., de Oliveira Silva, A. K., da Silva, N. H., & Pereira, E. C. (2020). Bioremediation of salinized soils by the lichen Cladonia substellata fomented by a nitrogen source and gamma radiation. Raega-O Espaço Geográfico em Análise, 49, 78-93.
  • Elkhateeb, W. A., El-Ghwas, D. E., & Daba, G. M. (2022). Lichens uses surprising uses of lichens that improve human life. J Biomed Res Environ Sci, 3(2), 189-194.
  • Emsen, B., Yildirim, E., & Aslan, A. (2015). Insecticidal activities of extracts of three lichen species on Sitophilus granarius (L.)(Coleoptera: Curculionidae).
  • Fernandez-Pastor, I., González-Menéndez, V., Martínez Andrade, K., Serrano, R., Mackenzie, T. A., Benítez, G., ... & Reyes, F. (2023). Xerophytic Lichens from Gypsiferous Outcrops of Arid Areas of Andalusia as a Source of Anti-Phytopathogenic Depsides. Journal of Fungi, 9(9), 887.
  • Fuji, K., & Hayakawa, C. (2022). Recalcitrance of lichen and moss litters increases soil carbon storage on permafrost. Plant and Soil, 472(1-2), 595-608.
  • Garg, A., & Chopra, L. (2022). Dye Waste: A significant environmental hazard. Materials Today: Proceedings, 48, 1310-1315.
  • Gill, H., Sorensen, J. L., & Collemare, J. (2022). Lichen fungal secondary metabolites: progress in the genomic era toward ecological roles in the interaction. In Plant Relationships: Fungal-Plant Interactions (pp. 185-208). Cham: Springer International Publishing.
  • Goga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M., & Bačkor, M. (2020). Lichen metabolites: an overview of some secondary metabolites and their biological potential. Co-evolution of secondary metabolites, 175-209.
  • Grimm, M., Grube, M., Schiefelbein, U., Zühlke, D., Bernhardt, J., & Riedel, K. (2021). The lichens’ microbiota, still a mystery?. Frontiers in Microbiology, 12, 714.
  • Gul, U. D. (2020). Investigate the Antibacterial Activity of Lichen Biomass Used in Textile Dye Removal. Journal of Biology and Life Science.
  • Halama, P., & Van Haluwin, C. (2004). Antifungal activity of lichen extracts and lichenic acids. BioControl, 49(1), 95-107.
  • Hawksworth, D. L. (2004). Rediscovery of the original material of Osbeck’s Lichen chinensis and the renstatement of the name Parmotrema perlatum (Parmeliaceae). Herzogia, 17(105), 37.
  • John, V. & Turk, A. (2017). A Checklist of the Lichens of Turkey (Türkiye Likenleri Listesi). İstanbul: Nezahat Gökyiğit Botanik Bahçesi Yayım, xv + 831 pp.
  • John, V., Güvenc, S. & Turk, A. (2020). Additions to the checklist and bibliography of the lichens and lichenicolous fungi of Turkey. –Archive for Lichenology, 19: 1-32.
  • Kadi, S., Lellou, S., Lellou, A., Hattab, F., Benhebal, H., Boussoum, M. O., ... & Schott, J. (2023). Study of the biosorption of two cationic dyes in aqueous media by heat-treated lichens (Xanthoria parietina). International Journal of Environmental Analytical Chemistry, 1-20.
  • Kalra, R., Conlan, X. A., & Goel, M. (2023). Recent advances in research for potential utilization of unexplored lichen metabolites. Biotechnology Advances, 62, 108072.
  • Kalra, R., Conlan, X. A., & Goel, M. (2021). Lichen allelopathy: a new hope for limiting chemical herbicide and pesticide use. Biocontrol Science and Technology, 31(8), 773-796.
  • Kanivebagilu, V. S., & Mesta, A. R. (2020). Lichens: A Novel Group of Natural Biopesticidal Sources. In Plant Pathogens: Detection and Management for Sustainable Agriculture (pp. 231-240). CRC Press.
  • Kello, M., & Goga, M. (2023). Lichen, Pseudevernia furfuracea (L.) Zopf: Analytical Compositional Features, Biological Activity and Use in Cancer Studies. In Ancient and Traditional Foods, Plants, Herbs and Spices used in Cancer (pp. 281-296). CRC Press.
  • Kekuda, T. P., Lavanya, D., & Pooja, R. (2019). Lichens as promising resources of enzyme inhibitors: A review. Journal of Drug Delivery and Therapeutics, 9(2-s), 665-676.
  • Kilic Yayla, S., Kocakaya, Z., Karatoprak, G. Ş., İlgün, S., & Ceylan, A. (2023). Analyzing the Impact of Ramalina digitellata, R. fastigiata, R. fraxinea, and R. polymorpha's Usnic Acid Concentration on Antioxidant, DNA‐Protective, Antimicrobial, and Cytotoxic Properties. Chemistry & Biodiversity, 20(1), e202200816.
  • Kirkpatrick, R. C., Zou, R. J., Dierenfeld, E. S., & Zhou, H. W. (2001). Digestion of selected foods by Yunnan snub‐nosed monkey Rhinopithecus bieti (Colobinae). American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists, 114(2), 156-162.
  • Kosanic, M., Rankovic, B., Stanojkovic, T., Vasiljevic, P., & Manojlovic, N. (2014). Biological activities and chemical composition of lichens from Serbia. Excli Journal, 13, 1226.
  • Koyuncu, H., & Kul, A. R. (2020). Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent. Applied Water Science, 10, 1-14.
  • Kulkarni, A. N., Watharkar, A. D., Rane, N. R., Jeon, B. H., & Govindwar, S. P. (2018). Decolorization and detoxification of dye mixture and textile effluent by lichen Dermatocarpon vellereceum in fixed bed upflow bioreactor with subsequent oxidative stress study. Ecotoxicology and environmental safety, 148, 17-25.
  • Kumar, S. V., Kekuda, T. R., Vinayaka, K. S., & Yogesh, M. (2010). Synergistic efficacy of lichen extracts and silver nanoparticles against bacteria causing food poisoning. Asian Journal of Research in Chemistry, 3(1), 67-70.
  • Loganathan, K., Chellamuthu, V., Karupuswami, D., Mohan, K., Suresh, U., Panneerselvam, C., ... & Alhawiti, A. S. (2023). Bio‐inspired synthesis of AgNPs from lichen as potential antibacterial and mosquito larvicidal activity with negligible toxicity on Gambusia affinis. Entomological Research.
  • Mendili, M., Aschi-Smiti, S., & Khadhri, A. (2023). Phytochemical screening of natural textile dyes extracted from Tunisian lichens. Biomass Conversion and Biorefinery, 1-18.
  • Mohamed, N. A., Ahmad, M. R., Abd Kadir, M. I., Ismail, A. S. M. I. D. A., & Wan Ahmad, W. Y. (2016). Dyeing of Silk Fabric with Extracted Dyes from Lichens. Advanced Materials Research, 1134, 165-170.
  • Molnár, K., & Farkas, E. (2010). Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforschung C, 65(3-4), 157-173.
  • Nayaka S, Upreti DK, Khare R. (2010). Medicinal lichens of India. Drugs from plants. Jaipur: Avishkar Publishers, Distributors; 1-54.
  • Nimis, P. L., & Skert, N. (2006). Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne. Environmental and Experimental Botany, 55(1-2), 175-182.
  • Odabasoglu, F., Aslan, A., Cakir, A., Suleyman, H., Karagoz, Y., Halici, M., & Bayir, Y. (2004). Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(11), 938-941.
  • Osyczka, P., Chowaniec, K., & Skubała, K. (2023). Membrane lipid peroxidation in lichens determined by the TBARS assay as a suitable biomarker for the prediction of elevated level of potentially toxic trace elements in soil. Ecological Indicators, 146, 109910.
  • Queffelec, J., Flórez-Fernández, N., Torres, M. D., & Domínguez, H. (2023). Evernia prunastri lichen as a source of bioactive glucans with potential for topical applications. International Journal of Biological Macromolecules, 128859.
  • Pawera, L., Łuczaj, Ł., Pieroni, A., & Polesny, Z. (2017). Traditional plant knowledge in the White Carpathians: Ethnobotany of wild food plants and crop wild relatives in the Czech Republic. Human Ecology, 45, 655-671.
  • Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, Yao X, Ruan JJ, Xu BL. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front Microbiol. 2021;12:670135.
  • Ponmurugan, P., & Arunkumar, D. (2023). Biodiversity & Conservative Research.
  • Rajendran, K., Karuppiah, P., Ponnusamy, P., Shaik, M. R., Khan, M., Oh, T. H., & Shaik, B. (2023). Anti-Inflammatory Activity of Mycobiont Extract of Parmotrema austrosinense (Zahlbr.) Hale in a Zebrafish Model. Journal of Marine Science and Engineering, 11(5), 1081.
  • Rankovic, B., & Kosanic, M. (2019). Lichens as a potential source of bioactive secondary metabolites. Lichen secondary metabolites: bioactive properties and pharmaceutical potential, 1-29.
  • Rankovic, B., Kosanic, M. (2014). “Lichens as a Potential Source of Bioactive Secondary Metabolites,” in Lichen Secondary Metabolites Bioactive Properties and Pharmaceutical Potential. Ed. Ranković, B. (Switzerland: Springer International Publishing), 1–26.
  • Rather, L. J., Jameel, S., Ganie, S. A., & Bhat, K. A. (2018). Lichen derived natural colorants: history, extraction, and applications. Handbook of Renewable Materials for Coloration and Finishing, 1, 103-14.
  • Ren, M., Jiang, S., Wang, Y., Pan, X., Pan, F., & Wei, X. (2023). Discovery and excavation of lichen bioactive natural products. Frontiers in Microbiology, 14, 1177123.
  • Rethinavelu, G., Lavanya, M., Krishnamoorthy, S., Baskaran, N., & Sivanandham, V. (2023). Edible lichens and its unique bioactives: A review of its pharmacological and food applications. Food and Humanity.
  • Rizzo, D. M., Lichtveld, M., Mazet, J. A., Togami, E., & Miller, S. A. (2021). Plant health and its effects on food safety and security in a One Health framework: Four case studies. One health outlook, 3, 1-9.
  • Schweppe, H., (1993). Handbuch der Naturfarbstoffe,Ecomed, Landsberg/Lech.
  • Sharma, M., & Mohammad, A. (2020). Lichens and lichenology: Historical and economic prospects. Lichen‐Derived Products: Extraction and Applications, 101-118.
  • Shukla, P., & Upreti, D. K. (2015). Lichen dyes: current scenario and future prospects. Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Volume 2, 209-229.
  • Shukla, V., Joshi, G. P., & Rawat, M. S. M. (2010). Lichens as a potential natural source of bioactive compounds: a review. Phytochemistry reviews, 9, 303-314.
  • Singh, G. (2023). Linking lichen metabolites to genes: emerging concepts and lessons from molecular biology and metagenomics. Journal of Fungi, 9(2), 160.
  • Soloveva, M. I., & Kuzmina, S. S. (2023). Antioxidant and antimicrobial activity of extracts of Cetraria islandica (L.) Ach. and Cladonia arbuscula (Wallr.) Flot. Acta Biologica Sibirica, 9, 139-146.
  • Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., ... & McCutcheon, J. P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science, 353(6298), 488-492.
  • Sen, H., Aksoy, A., Cobanoglu, G., & Selvi, S. (2014). Natural dyeing works on some lichens species distributed in Ayvacık (Çanakkale) and İvrindi (Balıkesir/Turkey). Biological Diversity and Conservation, 7(3), 184-189.
  • Senol, Z. M., Gul, U. D., & Simsek, S. (2021). Bioremoval of Safranin O dye by the identified lichen species called Evernia prunastri biomass; biosorption optimization, isotherms, kinetics, and thermodynamics. Biomass Conversion and Biorefinery, 1-11.
  • Taghiyeva, A., Dulger, A. F. T., Yoruk, E., & Engin, T. A. (2022). Investigation of the antifungal activity of lichen (Usnea longissima) extracts against Fusarium graminearum. Anatolian Journal of Botany, 6(2), 104-108.
  • Thakur, M., Kapoor, B., Kapoor, D., & Sharma, N. R. (2023). Lichens: A promising source of anti-cancerous activity and their molecular mechanisms. South African Journal of Botany, 159, 155-163.
  • Toksoz, O., Turkmenoglu, I., Berber, D., & Sesal, C. (2022). Assessment of the Antibacterial Potency of Usnea sp. against Foodborne Pathogens. International Journal of Advances in Engineering and Pure Sciences, 34(2), 342-349.
  • Tufan-Cetin, O., Cengiz, A., Gultekin, Z. N., Kahraman, S., Polat, B., Koc, S., & Cetin, H. (2023). Total phenolic and flavonoid contents of oakmoss lichen Evernia prunastri extracts and their insecticidal activities against larvae of two vector mosquitoes, Aedes aegypti and Culex pipiens. International Journal of Tropical Insect Science, 43(4), 1355-1363.
  • Upreti, D. K., Divakar, P. K., & Nayaka, S. (2005). Commercial and ethnic use of lichens in India. Economic botany, 59(3), 269-273.
  • Vinayaka, K. S., & Kekuda, T. P. (2024). Ethnic Knowledge on Medicinal and Nutritional Attributes of Lichens with Emphasis on the Western Ghats. Ethnic Knowledge and Perspectives of Medicinal Plants, 57-69.
  • Wang, L. S., Narui, T., Harada, H., Culberson, C. F., & Culberson, W. L. (2001). Ethnic uses of lichens in Yunnan, China. The Bryologist, 104(3), 345-349.
  • Yang, M. X., Devkota, S., Wang, L. S., & Scheidegger, C. (2021). Ethnolichenology—the use of lichens in the Himalayas and southwestern parts of China. Diversity, 13(7), 330.
  • Yazici, K., & Aslan, A. (2023). Additional records of lichens and lichenicolous fungi from the Giresun, Trabzon and Rize provinces, Turkey. Phytologia Balcanica, 29(1), 15-34.
  • Yildirim, E., Aslan, A., Emsen, B., Cakir, A., Ercisli, S. (2012a). Insecticidal effect of Usnea longissima (Parmeliaceae) extract against Sitophilus granarius (Coleoptera: Curculionidae). Int J Agric Biol,14(2):303–6.
  • Yildirim, E., Emsen, B., Aslan, A., Bulak, Y., Ercisli, S. (2012b) Insecticidal activity of lichens against the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egypt J Biol Pest Control, 22(2):151-6.
  • Yusuf, M. (2020). A review on trends and opportunity in edible lichens. Lichen‐Derived Products: Extraction and Applications, 189-201.
  • Zolovs, M., Jakubāne, I., Kirilova, J., Kivleniece, I., Moisejevs, R., Koļesnikova, J., & Pilāte, D. (2020). The potential antifeedant activity of lichen-forming fungal extracts against the invasive Spanish slug (Arion vulgaris). Canadian Journal of Zoology, 98(3), 195-201.

Potential raw material source from past to present: Lichens

Year 2023, Current Perspectives in Modern Biology: Exploring Diverse Frontiers, Paradigms, and Novel Horizons, 38 - 44, 31.12.2023
https://doi.org/10.51753/flsrt.1402906

Abstract

Lichens are preferred as a potential raw material source in various sectors due to their biological activities such as antioxidant, antimicrobial, antifungal, insecticidal, anticancer, and colorant potentials thanks to more than 1000 metabolites they contain. In addition to being used ethnopharmacologically for hundreds of years in the treatment of many diseases, the pharmaceutical potential of lichens is still being investigated today. Due to their aromatic structure and nutritional properties, lichens have been consumed as spices, bread-pastry and tea in the food sector for many years. Lichens are preferred in many sectors, especially in the textile sector, due to their dyestuff content, which is one of the most important economic uses of lichens. They are also known to have insecticidal and antifungal activity against phytopathogens in the agricultural field. Although only some of the activities of lichens and the metabolites they contain are known, all their properties are still not completely described. In this context, with the future discovery of the bioactivities of lichens and their active ingredients, they are expected to be used as potential raw materials in many sectors.

References

  • Abdallah, E. M. (2019). Evaluation of the antimicrobial activity of a lichen used as a spice (Platismatia glauca). Advancements in Life Sciences, 6(3), 110-115.
  • Airaksinen, M. M., Peura, P., Ala-Fossi-Salokangas, L., Antere, S., Lukkarinen, J., Saikkonen, M., & Stenbäck, F. (1986). Toxicity of plant material used as emergency food during famines in Finland. Journal of Ethnopharmacology, 18(3), 273-296.
  • Akpinar, A., Cansev, A., & Isleyen, M. (2021). Effects of the lichen Peltigera canina on Cucurbita pepo spp. pepo grown in soil contaminated by DDTs. Environmental Science and Pollution Research, 28, 14576-14585.
  • Aoussar, N., Manzali, R., Nattah, I., Rhallabi, N., Vasiljevic, P., Bouksaim, M., ... & Mellouki, F. (2017). Chemical composition and antioxidant activity of two lichens species (Pseudevernia furfuracea L and Evernia prunastri L) collected from Morocco. J Mater Environ Sci, 8(6), 1968-1976.
  • Arun, A. B., Girish, S., & Ravi, L. (2023). Photobiont symbiotic association in lichens. In Microbial Symbionts (pp. 161-175). Academic Press.
  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature reviews Drug discovery, 20(3), 200-216.
  • Bhat, N. B., Das, S., Sridevi, B. V., Nayaka, S., Birangal, S. R., Shenoy, G. G., & Joseph, A. (2023). Molecular docking and dynamics supported investigation of antiviral activity of Lichen metabolites of Roccella montagnei: An in silico and in vitro study. Journal of Biomolecular Structure and Dynamics, 1-14.
  • Cansaran-Duman, D., & Aras, S. (2015). Lichens as an alternative biosorbent: a review. Phytoremediation: Management of Environmental Contaminants, Volume 2, 233-241.
  • Cox, P. A., Banack, S. A., Murch, S. J., Rasmussen, U., Tien, G., Bidigare, R. R., ... & Bergman, B. (2005). Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proceedings of the National Academy of Sciences, 102(14), 5074-5078.
  • Cui, G.-Y.; Duan, H. Study on edible lichens in China. Jiangsu Agric. Res. 2000, 21, 59–62.
  • Culberson, W. L. (2002). Lichen Flora of the Greater Sonoran Desert Region—Volume 1. The Bryologist, 105(4), 725-725.
  • Cobanoglu, G. (2021). Geçmişten Bugüne İstanbul Liken Çalışmaları Üzerine Bir Derleme. Bağbahçe Bilim Dergisi, 8(1), 259-266.
  • Dawes, E. A. (2017). Carbon metabolism. In Continuous cultures of cells (pp. 1-38). CRC Press.
  • Desmaretes, L., Millot, M., Chollet-Krugler, M., Boustie, J., Camuzet, C., François, N., ... & Séron, K. (2023). Lichen or Associated Micro-Organism Compounds Are Active against Human Coronaviruses. Viruses, 15(9), 1859.
  • Devkota, S., Chaudhary, R. P., Werth, S., & Scheidegger, C. (2017). Indigenous knowledge and use of lichens by the lichenophilic communities of the Nepal Himalaya. Journal of Ethnobiology and Ethnomedicine, 13(1), 1-10.
  • Dhaouadi, S., Khalloufi, N., Ayati, K., Ayeb, N., & Béjaoui, M. (2022). Use of lichen species for air pollution biomonitoring: Case of Dar-Chichou forest (Cap-Bon, North-East Tunisia). Environmental and Sustainability Indicators, 16, 100211.
  • dos Santos Lima, D. N., de Oliveira Silva, A. K., da Silva, N. H., & Pereira, E. C. (2020). Bioremediation of salinized soils by the lichen Cladonia substellata fomented by a nitrogen source and gamma radiation. Raega-O Espaço Geográfico em Análise, 49, 78-93.
  • Elkhateeb, W. A., El-Ghwas, D. E., & Daba, G. M. (2022). Lichens uses surprising uses of lichens that improve human life. J Biomed Res Environ Sci, 3(2), 189-194.
  • Emsen, B., Yildirim, E., & Aslan, A. (2015). Insecticidal activities of extracts of three lichen species on Sitophilus granarius (L.)(Coleoptera: Curculionidae).
  • Fernandez-Pastor, I., González-Menéndez, V., Martínez Andrade, K., Serrano, R., Mackenzie, T. A., Benítez, G., ... & Reyes, F. (2023). Xerophytic Lichens from Gypsiferous Outcrops of Arid Areas of Andalusia as a Source of Anti-Phytopathogenic Depsides. Journal of Fungi, 9(9), 887.
  • Fuji, K., & Hayakawa, C. (2022). Recalcitrance of lichen and moss litters increases soil carbon storage on permafrost. Plant and Soil, 472(1-2), 595-608.
  • Garg, A., & Chopra, L. (2022). Dye Waste: A significant environmental hazard. Materials Today: Proceedings, 48, 1310-1315.
  • Gill, H., Sorensen, J. L., & Collemare, J. (2022). Lichen fungal secondary metabolites: progress in the genomic era toward ecological roles in the interaction. In Plant Relationships: Fungal-Plant Interactions (pp. 185-208). Cham: Springer International Publishing.
  • Goga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M., & Bačkor, M. (2020). Lichen metabolites: an overview of some secondary metabolites and their biological potential. Co-evolution of secondary metabolites, 175-209.
  • Grimm, M., Grube, M., Schiefelbein, U., Zühlke, D., Bernhardt, J., & Riedel, K. (2021). The lichens’ microbiota, still a mystery?. Frontiers in Microbiology, 12, 714.
  • Gul, U. D. (2020). Investigate the Antibacterial Activity of Lichen Biomass Used in Textile Dye Removal. Journal of Biology and Life Science.
  • Halama, P., & Van Haluwin, C. (2004). Antifungal activity of lichen extracts and lichenic acids. BioControl, 49(1), 95-107.
  • Hawksworth, D. L. (2004). Rediscovery of the original material of Osbeck’s Lichen chinensis and the renstatement of the name Parmotrema perlatum (Parmeliaceae). Herzogia, 17(105), 37.
  • John, V. & Turk, A. (2017). A Checklist of the Lichens of Turkey (Türkiye Likenleri Listesi). İstanbul: Nezahat Gökyiğit Botanik Bahçesi Yayım, xv + 831 pp.
  • John, V., Güvenc, S. & Turk, A. (2020). Additions to the checklist and bibliography of the lichens and lichenicolous fungi of Turkey. –Archive for Lichenology, 19: 1-32.
  • Kadi, S., Lellou, S., Lellou, A., Hattab, F., Benhebal, H., Boussoum, M. O., ... & Schott, J. (2023). Study of the biosorption of two cationic dyes in aqueous media by heat-treated lichens (Xanthoria parietina). International Journal of Environmental Analytical Chemistry, 1-20.
  • Kalra, R., Conlan, X. A., & Goel, M. (2023). Recent advances in research for potential utilization of unexplored lichen metabolites. Biotechnology Advances, 62, 108072.
  • Kalra, R., Conlan, X. A., & Goel, M. (2021). Lichen allelopathy: a new hope for limiting chemical herbicide and pesticide use. Biocontrol Science and Technology, 31(8), 773-796.
  • Kanivebagilu, V. S., & Mesta, A. R. (2020). Lichens: A Novel Group of Natural Biopesticidal Sources. In Plant Pathogens: Detection and Management for Sustainable Agriculture (pp. 231-240). CRC Press.
  • Kello, M., & Goga, M. (2023). Lichen, Pseudevernia furfuracea (L.) Zopf: Analytical Compositional Features, Biological Activity and Use in Cancer Studies. In Ancient and Traditional Foods, Plants, Herbs and Spices used in Cancer (pp. 281-296). CRC Press.
  • Kekuda, T. P., Lavanya, D., & Pooja, R. (2019). Lichens as promising resources of enzyme inhibitors: A review. Journal of Drug Delivery and Therapeutics, 9(2-s), 665-676.
  • Kilic Yayla, S., Kocakaya, Z., Karatoprak, G. Ş., İlgün, S., & Ceylan, A. (2023). Analyzing the Impact of Ramalina digitellata, R. fastigiata, R. fraxinea, and R. polymorpha's Usnic Acid Concentration on Antioxidant, DNA‐Protective, Antimicrobial, and Cytotoxic Properties. Chemistry & Biodiversity, 20(1), e202200816.
  • Kirkpatrick, R. C., Zou, R. J., Dierenfeld, E. S., & Zhou, H. W. (2001). Digestion of selected foods by Yunnan snub‐nosed monkey Rhinopithecus bieti (Colobinae). American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists, 114(2), 156-162.
  • Kosanic, M., Rankovic, B., Stanojkovic, T., Vasiljevic, P., & Manojlovic, N. (2014). Biological activities and chemical composition of lichens from Serbia. Excli Journal, 13, 1226.
  • Koyuncu, H., & Kul, A. R. (2020). Removal of methylene blue dye from aqueous solution by nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent. Applied Water Science, 10, 1-14.
  • Kulkarni, A. N., Watharkar, A. D., Rane, N. R., Jeon, B. H., & Govindwar, S. P. (2018). Decolorization and detoxification of dye mixture and textile effluent by lichen Dermatocarpon vellereceum in fixed bed upflow bioreactor with subsequent oxidative stress study. Ecotoxicology and environmental safety, 148, 17-25.
  • Kumar, S. V., Kekuda, T. R., Vinayaka, K. S., & Yogesh, M. (2010). Synergistic efficacy of lichen extracts and silver nanoparticles against bacteria causing food poisoning. Asian Journal of Research in Chemistry, 3(1), 67-70.
  • Loganathan, K., Chellamuthu, V., Karupuswami, D., Mohan, K., Suresh, U., Panneerselvam, C., ... & Alhawiti, A. S. (2023). Bio‐inspired synthesis of AgNPs from lichen as potential antibacterial and mosquito larvicidal activity with negligible toxicity on Gambusia affinis. Entomological Research.
  • Mendili, M., Aschi-Smiti, S., & Khadhri, A. (2023). Phytochemical screening of natural textile dyes extracted from Tunisian lichens. Biomass Conversion and Biorefinery, 1-18.
  • Mohamed, N. A., Ahmad, M. R., Abd Kadir, M. I., Ismail, A. S. M. I. D. A., & Wan Ahmad, W. Y. (2016). Dyeing of Silk Fabric with Extracted Dyes from Lichens. Advanced Materials Research, 1134, 165-170.
  • Molnár, K., & Farkas, E. (2010). Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforschung C, 65(3-4), 157-173.
  • Nayaka S, Upreti DK, Khare R. (2010). Medicinal lichens of India. Drugs from plants. Jaipur: Avishkar Publishers, Distributors; 1-54.
  • Nimis, P. L., & Skert, N. (2006). Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne. Environmental and Experimental Botany, 55(1-2), 175-182.
  • Odabasoglu, F., Aslan, A., Cakir, A., Suleyman, H., Karagoz, Y., Halici, M., & Bayir, Y. (2004). Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(11), 938-941.
  • Osyczka, P., Chowaniec, K., & Skubała, K. (2023). Membrane lipid peroxidation in lichens determined by the TBARS assay as a suitable biomarker for the prediction of elevated level of potentially toxic trace elements in soil. Ecological Indicators, 146, 109910.
  • Queffelec, J., Flórez-Fernández, N., Torres, M. D., & Domínguez, H. (2023). Evernia prunastri lichen as a source of bioactive glucans with potential for topical applications. International Journal of Biological Macromolecules, 128859.
  • Pawera, L., Łuczaj, Ł., Pieroni, A., & Polesny, Z. (2017). Traditional plant knowledge in the White Carpathians: Ethnobotany of wild food plants and crop wild relatives in the Czech Republic. Human Ecology, 45, 655-671.
  • Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, Yao X, Ruan JJ, Xu BL. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front Microbiol. 2021;12:670135.
  • Ponmurugan, P., & Arunkumar, D. (2023). Biodiversity & Conservative Research.
  • Rajendran, K., Karuppiah, P., Ponnusamy, P., Shaik, M. R., Khan, M., Oh, T. H., & Shaik, B. (2023). Anti-Inflammatory Activity of Mycobiont Extract of Parmotrema austrosinense (Zahlbr.) Hale in a Zebrafish Model. Journal of Marine Science and Engineering, 11(5), 1081.
  • Rankovic, B., & Kosanic, M. (2019). Lichens as a potential source of bioactive secondary metabolites. Lichen secondary metabolites: bioactive properties and pharmaceutical potential, 1-29.
  • Rankovic, B., Kosanic, M. (2014). “Lichens as a Potential Source of Bioactive Secondary Metabolites,” in Lichen Secondary Metabolites Bioactive Properties and Pharmaceutical Potential. Ed. Ranković, B. (Switzerland: Springer International Publishing), 1–26.
  • Rather, L. J., Jameel, S., Ganie, S. A., & Bhat, K. A. (2018). Lichen derived natural colorants: history, extraction, and applications. Handbook of Renewable Materials for Coloration and Finishing, 1, 103-14.
  • Ren, M., Jiang, S., Wang, Y., Pan, X., Pan, F., & Wei, X. (2023). Discovery and excavation of lichen bioactive natural products. Frontiers in Microbiology, 14, 1177123.
  • Rethinavelu, G., Lavanya, M., Krishnamoorthy, S., Baskaran, N., & Sivanandham, V. (2023). Edible lichens and its unique bioactives: A review of its pharmacological and food applications. Food and Humanity.
  • Rizzo, D. M., Lichtveld, M., Mazet, J. A., Togami, E., & Miller, S. A. (2021). Plant health and its effects on food safety and security in a One Health framework: Four case studies. One health outlook, 3, 1-9.
  • Schweppe, H., (1993). Handbuch der Naturfarbstoffe,Ecomed, Landsberg/Lech.
  • Sharma, M., & Mohammad, A. (2020). Lichens and lichenology: Historical and economic prospects. Lichen‐Derived Products: Extraction and Applications, 101-118.
  • Shukla, P., & Upreti, D. K. (2015). Lichen dyes: current scenario and future prospects. Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Volume 2, 209-229.
  • Shukla, V., Joshi, G. P., & Rawat, M. S. M. (2010). Lichens as a potential natural source of bioactive compounds: a review. Phytochemistry reviews, 9, 303-314.
  • Singh, G. (2023). Linking lichen metabolites to genes: emerging concepts and lessons from molecular biology and metagenomics. Journal of Fungi, 9(2), 160.
  • Soloveva, M. I., & Kuzmina, S. S. (2023). Antioxidant and antimicrobial activity of extracts of Cetraria islandica (L.) Ach. and Cladonia arbuscula (Wallr.) Flot. Acta Biologica Sibirica, 9, 139-146.
  • Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., ... & McCutcheon, J. P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science, 353(6298), 488-492.
  • Sen, H., Aksoy, A., Cobanoglu, G., & Selvi, S. (2014). Natural dyeing works on some lichens species distributed in Ayvacık (Çanakkale) and İvrindi (Balıkesir/Turkey). Biological Diversity and Conservation, 7(3), 184-189.
  • Senol, Z. M., Gul, U. D., & Simsek, S. (2021). Bioremoval of Safranin O dye by the identified lichen species called Evernia prunastri biomass; biosorption optimization, isotherms, kinetics, and thermodynamics. Biomass Conversion and Biorefinery, 1-11.
  • Taghiyeva, A., Dulger, A. F. T., Yoruk, E., & Engin, T. A. (2022). Investigation of the antifungal activity of lichen (Usnea longissima) extracts against Fusarium graminearum. Anatolian Journal of Botany, 6(2), 104-108.
  • Thakur, M., Kapoor, B., Kapoor, D., & Sharma, N. R. (2023). Lichens: A promising source of anti-cancerous activity and their molecular mechanisms. South African Journal of Botany, 159, 155-163.
  • Toksoz, O., Turkmenoglu, I., Berber, D., & Sesal, C. (2022). Assessment of the Antibacterial Potency of Usnea sp. against Foodborne Pathogens. International Journal of Advances in Engineering and Pure Sciences, 34(2), 342-349.
  • Tufan-Cetin, O., Cengiz, A., Gultekin, Z. N., Kahraman, S., Polat, B., Koc, S., & Cetin, H. (2023). Total phenolic and flavonoid contents of oakmoss lichen Evernia prunastri extracts and their insecticidal activities against larvae of two vector mosquitoes, Aedes aegypti and Culex pipiens. International Journal of Tropical Insect Science, 43(4), 1355-1363.
  • Upreti, D. K., Divakar, P. K., & Nayaka, S. (2005). Commercial and ethnic use of lichens in India. Economic botany, 59(3), 269-273.
  • Vinayaka, K. S., & Kekuda, T. P. (2024). Ethnic Knowledge on Medicinal and Nutritional Attributes of Lichens with Emphasis on the Western Ghats. Ethnic Knowledge and Perspectives of Medicinal Plants, 57-69.
  • Wang, L. S., Narui, T., Harada, H., Culberson, C. F., & Culberson, W. L. (2001). Ethnic uses of lichens in Yunnan, China. The Bryologist, 104(3), 345-349.
  • Yang, M. X., Devkota, S., Wang, L. S., & Scheidegger, C. (2021). Ethnolichenology—the use of lichens in the Himalayas and southwestern parts of China. Diversity, 13(7), 330.
  • Yazici, K., & Aslan, A. (2023). Additional records of lichens and lichenicolous fungi from the Giresun, Trabzon and Rize provinces, Turkey. Phytologia Balcanica, 29(1), 15-34.
  • Yildirim, E., Aslan, A., Emsen, B., Cakir, A., Ercisli, S. (2012a). Insecticidal effect of Usnea longissima (Parmeliaceae) extract against Sitophilus granarius (Coleoptera: Curculionidae). Int J Agric Biol,14(2):303–6.
  • Yildirim, E., Emsen, B., Aslan, A., Bulak, Y., Ercisli, S. (2012b) Insecticidal activity of lichens against the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egypt J Biol Pest Control, 22(2):151-6.
  • Yusuf, M. (2020). A review on trends and opportunity in edible lichens. Lichen‐Derived Products: Extraction and Applications, 189-201.
  • Zolovs, M., Jakubāne, I., Kirilova, J., Kivleniece, I., Moisejevs, R., Koļesnikova, J., & Pilāte, D. (2020). The potential antifeedant activity of lichen-forming fungal extracts against the invasive Spanish slug (Arion vulgaris). Canadian Journal of Zoology, 98(3), 195-201.
There are 83 citations in total.

Details

Primary Language Turkish
Subjects Botany (Other)
Journal Section Review
Authors

Orçun Toksöz 0000-0002-4863-3232

Publication Date December 31, 2023
Submission Date December 10, 2023
Acceptance Date December 26, 2023
Published in Issue Year 2023 Current Perspectives in Modern Biology: Exploring Diverse Frontiers, Paradigms, and Novel Horizons

Cite

APA Toksöz, O. (2023). Geçmişten günümüze potansiyel hammadde kaynağı: Likenler. Frontiers in Life Sciences and Related Technologies38-44. https://doi.org/10.51753/flsrt.1402906

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.