Research Article
BibTex RIS Cite

In-vitro bioaccessibility and mineral content of two Ribes species growing in Cumalikizik village, Bursa Türkiye

Year 2024, Volume: 5 Issue: 2, 101 - 107, 30.08.2024
https://doi.org/10.51753/flsrt.1413591

Abstract

The fruits of the genus Ribes, also known as currant or gooseberries, can be consumed both as processed and fresh. These berries’ health benefits have been well described in general but their biophysicochemical properties largely depend on geographical changes and genotype differences. Six Ribes genotypes including Ribes rubrum (RR1-RR4) and Ribes nigrum (RN1 and RN2) from Cumalikizik, Bursa were compared for their fruit properties, mineral content, and their bioaccessibility. Fruit characteristics were evaluated by analyzing fruit and seed number, soluble solids content (°Brix), fruit color properties, and pH. Potassium (K), calcium (Ca), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and magnesium (Mg) contents of fruits were determined using ICP-OES (inductively coupled plasma optical emission spectrometry). The results indicated that all Ribes genotypes were rich in K, Ca, and Mg content while they had relatively poor in Mn, Cu, and Zn content. Bioaccessibility of K, Ca, Mg, Fe, Mn, Cu, or Zn was 85%, 84%, 63%, 30%, 50%, 37% or 44% respectively for two Ribes species. Significant differences were found between R. rubrum and R. nigrum genotypes in terms of fruit size and weight, bunch length, seed number, total soluble solids, pH and color, as well as Mn content and Zn accessibility. These data provide valuable information regarding the physicochemical properties, mineral content, and bioaccessibility of two currant species for breeding studies and show that the Ribes species is a good source of K, due both to its high content and considerable bioaccessibility. Further research should consider investigating the contents and bioaccessibilities of other nutritional factors that Ribes genotypes contain.

References

  • Adina, F., Cecilia, G., Felicia, G., Carmen, D., & Ovidiu, T. (2017). Identification and quantification of phenolic compounds from red currant (Ribes rubrum L.) and raspberries (Rubus idaeus L.). International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 6, 30-37.
  • Ahunbay, Z., Ayrancılar, T., Polat, A., & Uray, A. (2014). Conservation of the vernacular heritage in the villages of Bursa, Turkey. In: Mileto C., Vegas F., García Soriano L., Cristini V. (eds) Vernacular Architecture: Towards a Sustainable Future (pp. 59-64). CRC Press.
  • AOAC, (2020). Association of Official Analytical Chemists, & Association of Official Agricultural Chemists (US). Official methods of analysis of the Association of Official Analytical Chemists 17th ed.; AOAC: Washington, DC, USA.
  • Brennan, R., Jorgensen, L., Hackett, C., Woodhead, M., Gordon, S., & Russell, J. (2008). The development of a genetic linkage map of blackcurrant (Ribes nigrum L.) and the identification of regions associated with key fruit quality and agronomic traits. Euphytica, 161, 19-34.
  • Cansev, A., Ipek, M., Celik, G., Taskesen, S., Sahan, Y., Ipek, A., & Akpınar, A. (2022). Comparative characterization of the content and in vitro bioaccessibility of minerals in two Cornus species. Mediterranean Agricultural Sciences, 35(3), 115-120.
  • Ceccanti, C., Guidi, L., D’Alessandro, C., & Cupisti, A. (2022). Potassium bioaccessibility in uncooked and cooked plant foods: results from a static in vitro digestion methodology. Toxins, 14(10), 668.
  • Celenk, A.G. (2015). Bazı Ribes L. (Grossulariaceae) taksonlarinin molekuler karakterizasyonu, Yüksek Lisans Tezi, (pp. 1-62). İstanbul Universitesi, Fen Bilimleri Enstitusu.
  • Clark, C. J., Cooney, J. M., Hopkins, W. A., & Currie, A. (2018). Global mid-infrared prediction models facilitate simultaneous analysis of juice composition from berries of Actinidia, Ribes, Rubus and Vaccinium species. Food Analytical Methods, 11(11), 3147-3160.
  • Contessa, C., Mellano, M. G., Beccaro, G. L., Giusiano, A., & Botta, R. (2013). Total antioxidant capacity and total phenolic and anthocyanin contents in fruit species grown in Northwest Italy. Scientia Horticulturae, 160, 351-357.
  • Cosmulescu, S., Trandafir, I., & Nour, V. (2015). Mineral composition of fruit in black and red currant. South Western Journal of Horticulture, Biology and Environment, 6(1), 45-51.
  • Cvetković, M., Ilić, D., Petrović, S., & Miladinović, B. (2021). Determination of mineral composition of the Red Pool type of red currant (Ribes rubrum L, Grossulariaceae). Archives of Pharmacy, 71(Suppl. 5), S66-S66.
  • Cvetković, M., Ilić, D., Petrović, S., & Miladinović, B. (2022). Mineral composition of the red currant (Ribes rubrum L.) variety Redpoll lyophilized waste extract. Archives of Pharmacy, 72(Suppl. 4), S501-S502.
  • Dima, C., Assadpour, E., Dima, S., & Jafari, S. M. (2021). Nutraceutical nanodelivery; an insight into the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Critical Reviews in Food Science and Nutrition, 61(18), 3031-3065.
  • Domínguez-Fernández, M., Yang, P. Y. T., Ludwig, I. A., Clifford, M. N., Cid, C., & Rodriguez-Mateos, A. (2022). In vivo study of the bioavailability and metabolic profile of (poly) phenols after sous-vide artichoke consumption. Food Chemistry, 367, 130620.
  • de Souza, V. R., Pereira, P. A. P., da Silva, T. L. T., de Oliveira Lima, L. C., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156, 362-368. Ejaz, A., Waliat, S., Afzaal, M., Saeed, F., Ahmad, A., Din, A., ... & Khan, M. R. (2023). Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants (Ribes nigrum L): A comprehensive review. Food Science & Nutrition, 11(10), 5799-5817.
  • Eksi Karaagac, H., Cavus, F., Kadioglu, B., Ugur, N., Tokat, E., & Sahan, Y. (2020). Evaluation of nutritional, color and volatiles properties of currant (Ribes spp.) cultivars in Turkey. Food Science and Technology, 41(2), 304-313.
  • FAOSTAT, (2024). Food and agriculture organization of the United Nations (FAO), http://www.fao.org/ faostat /en / -data/QC, Last accessed on August 25, 2024.
  • FDA, (2020). Food and Drug Administration. Retrieved from, Daily value on the new nutrition and supplement facts labels, https://www.fda.gov/, Last accessed on August 25, 2024.
  • González, M. J. A., Carrera, C., Barbero, G. F., & Palma, M. (2022). A comparison study between ultrasound–assisted and enzyme–assisted extraction of anthocyanins from blackcurrant (Ribes nigrum L.). Food Chemistry: X, 13, 100192.
  • Hu, Y., Lin, Q., Zhao, H., Li, X., Sang, S., McClements, D. J., ... & Qiu, C. (2023). Bioaccessibility and bioavailability of phytochemicals: Influencing factors, improvements, and evaluations. Food Hydrocolloids, 135, 108165.
  • Hummer, K. E., & Dale, A. D. A. M. (2010). Horticulture of Ribes. Forest Pathology, 40(3‐4), 251-263.
  • Jo, M., Ban, C., Goh, K. K., & Choi, Y. J. (2021). Enhancement of the gut-retention time of resveratrol using waxy maize starch nanocrystal-stabilized and chitosan-coated Pickering emulsions. Food Hydrocolloids, 112, 106291.
  • Kaldmaee, H., Kikas, A., Arus, L., & Libek, A. V. (2013). Genotype and microclimate conditions influence ripening pattern and quality of blackcurrant (Ribes nigrum L.) fruit. Zemdirbyste-Agriculture, 100(2), 167-174.
  • Karlsons, A., Osvalde, A., Čekstere, G., & Pormale, J. (2018). Research on the mineral composition of cultivated and wild blueberries and cranberries. Agronomy Research, 16(2), 454-463.
  • Kowalski, R., & de Mejia, E. G. (2021). Phenolic composition, antioxidant capacity and physical characterization of ten blackcurrant (Ribes nigrum) cultivars, their juices, and the inhibition of type 2 diabetes and inflammation biochemical markers. Food Chemistry, 359, 129889.
  • Krüger, E., Dietrich, H., Hey, M., & Patz, C. D. (2012). Effects of cultivar, yield, berry weight, temperature and ripening stage on bioactive compounds of black currants. Journal of Applied Botany and Food Quality, 84(1), 40.
  • Larsson, S. C., Virtanen, M. J., Mars, M., Männistö, S., Pietinen, P., Albanes, D., & Virtamo, J. (2008). Magnesium, calcium, potassium, and sodium intakes and risk of stroke in male smokers. Archives of Internal Medicine, 168(5), 459-465.
  • Liang, X., Ye, Y., Zhu, Y., Xiao, J., & Qiao, Y. (2023). Multivariate comparative analysis of chemical constituent changes and antioxidant properties of polysaccharides in Ribes stenocarpum maxim. at different maturity stages on the Qinghai-Tibet Plateau. Scientia Horticulturae, 308, 111556.
  • Solcan, M. B., Fizeșan, I., Vlase, L., Vlase, A. M., Rusu, M. E., Mates, L., Petru, A. E., ... & Popa, D. S. (2023). Phytochemical profile and biological activities of extracts obtained from young shoots of blackcurrant (Ribes nigrum L.), european blueberry (Vaccinium myrtillus L.), and mountain cranberry (Vaccinium vitis-idaea L.). Horticulturae, 9(11), 1163.
  • Messinger, W., Hummer, K., & Liston, A. (1999). Ribes (Grossulariaceae) phylogeny as indicated by restriction-site polymorphisms of PCR-amplified chloroplast DNA. Plant Systematics and Evolution, 217, 185-195.
  • Mikulic-Petkovsek, M., Koron, D., & Veberic, R. (2016). Quality parameters of currant berries from three different cluster positions. Scientia Horticulturae, 210, 188-196.
  • Montiel-Sánchez, M., García-Cayuela, T., Gómez-Maqueo, A., García, H. S., & Cano, M. P. (2021). In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chemistry, 342, 128087.
  • Naismith, D. J., & Braschi, A. (2008). An investigation into the bioaccessibility of potassium in unprocessed fruits and vegetables. International Journal of Food Sciences and Nutrition, 59(5), 438-450.
  • Nour, V., Trandafir, I., & Ionica, M. E. (2011). Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars. Fruits, 66(5), 353-362.
  • Pantelidis, G. E., Vasilakakis, M., Manganaris, G. A., & Diamantidis, G. R. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry, 102(3), 777-783.
  • Paunovic, V., Nikolic, M., Miletić, R., & Mašković, P. (2017). Vitamin and mineral content in black currant (Ribes nigrum L.) fruits as affected by soil management system. Acta Scientiarum Polonorum Hortorum Cultus, 16(5), 135-144.
  • Pereira, C. C., da Silva, E. D. N., de Souza, A. O., Vieira, M. A., Ribeiro, A. S., & Cadore, S. (2018). Evaluation of the bioaccessibility of minerals from blackberries, raspberries, blueberries and strawberries. Journal of Food Composition and Analysis, 68, 73-78.
  • Rubinskiene, M., Viskelis, P., Jasutiene, I., Viskeliene, R., & Bobinas, C. J. F. R. I. (2005). Impact of various factors on the composition and stability of black currant anthocyanins. Food Research International, 38(8-9), 867-871.
  • Da Silva Pinto, M., Kwon, Y. I., Apostolidis, E., Lajolo, F. M., Genovese, M. I., & Shetty, K. (2010). Evaluation of red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva‐crispa) for potential management of type 2 diabetes and hypertension using in vitro models. Journal of Food Biochemistry, 34(3), 639-660.
  • Soloshenko, V. (2018). Taxonomic composition of the Ribes L. in the collecting plantations in Ukrainian botanic institutions. Revista Botanică, 17(2), 64-68.
  • Staszowska-Karkut, M., & Materska, M. (2020). Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients, 12(2), 463.
  • Tian, Y., Laaksonen, O., Haikonen, H., Vanag, A., Ejaz, H., Linderborg, K., ... & Yang, B. (2019). Compositional diversity among blackcurrant (Ribes nigrum) cultivars originating from European countries. Journal of Agricultural and Food Chemistry, 67(19), 5621-5633.
  • Tian, Y., Karhu, S., Virtanen, M., Linderborg, K. M., Yang, B., & Laaksonen, O. (2023). Variation of chemical and sensory profiles of blackcurrant (Ribes nigrum) juices produced from different cultivars of European origins. LWT, 173, 114353.
  • Trych, U., Buniowska, M., Skąpska, S., Starzonek, S., & Marszałek, K. (2020). The bioaccessibility of antioxidants in black currant puree after high hydrostatic pressure treatment. Molecules, 25(15), 3544.
  • TSE, (2001). TS 1728 ISO 1842: Meyve Sebze Urunleri -pH Tayini. Ankara: TSE.
  • Turkkomp, (2024). Ulusal Gida Kompozisyonlari Veri Tabani, http://www.turkomp.gov.tr/, Last accessed on August 25, 2024.
  • Usal, M., & Sahan, Y. (2020). In vitro evaluation of the bioaccessibility of antioxidative properties in commercially baby foods. Journal of Food Science and Technology, 57, 3493-3501.
  • USDA, (2024). U.S. Department of Agriculture, Food Data Central, https://fdc.nal.usda.gov/error.html, Last accessed on August 25, 2024.
  • Vitali, D., Dragojević, I. V., & Šebečić, B. (2009). Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chemistry, 114(4), 1462-1469.
  • Yurt, B., Behcet, L., Demir, N., & Hayaloglu, A. A. (2021). Lokal endemik Ribes anatolica Behçet (Grossulariaceae) meyvelerinin bazi fizikokimyasal özellikleri, toplam fenolik madde miktari, antioksidan kapasiteleri ve fenolik kompozisyonunun belirlenmesi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8(14), 277-282.
  • Wang, S. Y., & Zheng, W. (2001). Effect of plant growth temperature on antioxidant capacity in strawberry. Journal of Agricultural and Food Chemistry, 49(10), 4977-4982.
  • Zdunić, G., Šavikin, K., Pljevljakušić, D., & Djordjević, B. (2016). Black (Ribes nigrum L.) and red currant (Ribes rubrum L.) cultivars. In: Simmonds M. S. J., Preedy V. R. (eds) Nutritional Composition of Fruit Cultivars (pp. 101-126). Academic Press.
Year 2024, Volume: 5 Issue: 2, 101 - 107, 30.08.2024
https://doi.org/10.51753/flsrt.1413591

Abstract

References

  • Adina, F., Cecilia, G., Felicia, G., Carmen, D., & Ovidiu, T. (2017). Identification and quantification of phenolic compounds from red currant (Ribes rubrum L.) and raspberries (Rubus idaeus L.). International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 6, 30-37.
  • Ahunbay, Z., Ayrancılar, T., Polat, A., & Uray, A. (2014). Conservation of the vernacular heritage in the villages of Bursa, Turkey. In: Mileto C., Vegas F., García Soriano L., Cristini V. (eds) Vernacular Architecture: Towards a Sustainable Future (pp. 59-64). CRC Press.
  • AOAC, (2020). Association of Official Analytical Chemists, & Association of Official Agricultural Chemists (US). Official methods of analysis of the Association of Official Analytical Chemists 17th ed.; AOAC: Washington, DC, USA.
  • Brennan, R., Jorgensen, L., Hackett, C., Woodhead, M., Gordon, S., & Russell, J. (2008). The development of a genetic linkage map of blackcurrant (Ribes nigrum L.) and the identification of regions associated with key fruit quality and agronomic traits. Euphytica, 161, 19-34.
  • Cansev, A., Ipek, M., Celik, G., Taskesen, S., Sahan, Y., Ipek, A., & Akpınar, A. (2022). Comparative characterization of the content and in vitro bioaccessibility of minerals in two Cornus species. Mediterranean Agricultural Sciences, 35(3), 115-120.
  • Ceccanti, C., Guidi, L., D’Alessandro, C., & Cupisti, A. (2022). Potassium bioaccessibility in uncooked and cooked plant foods: results from a static in vitro digestion methodology. Toxins, 14(10), 668.
  • Celenk, A.G. (2015). Bazı Ribes L. (Grossulariaceae) taksonlarinin molekuler karakterizasyonu, Yüksek Lisans Tezi, (pp. 1-62). İstanbul Universitesi, Fen Bilimleri Enstitusu.
  • Clark, C. J., Cooney, J. M., Hopkins, W. A., & Currie, A. (2018). Global mid-infrared prediction models facilitate simultaneous analysis of juice composition from berries of Actinidia, Ribes, Rubus and Vaccinium species. Food Analytical Methods, 11(11), 3147-3160.
  • Contessa, C., Mellano, M. G., Beccaro, G. L., Giusiano, A., & Botta, R. (2013). Total antioxidant capacity and total phenolic and anthocyanin contents in fruit species grown in Northwest Italy. Scientia Horticulturae, 160, 351-357.
  • Cosmulescu, S., Trandafir, I., & Nour, V. (2015). Mineral composition of fruit in black and red currant. South Western Journal of Horticulture, Biology and Environment, 6(1), 45-51.
  • Cvetković, M., Ilić, D., Petrović, S., & Miladinović, B. (2021). Determination of mineral composition of the Red Pool type of red currant (Ribes rubrum L, Grossulariaceae). Archives of Pharmacy, 71(Suppl. 5), S66-S66.
  • Cvetković, M., Ilić, D., Petrović, S., & Miladinović, B. (2022). Mineral composition of the red currant (Ribes rubrum L.) variety Redpoll lyophilized waste extract. Archives of Pharmacy, 72(Suppl. 4), S501-S502.
  • Dima, C., Assadpour, E., Dima, S., & Jafari, S. M. (2021). Nutraceutical nanodelivery; an insight into the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Critical Reviews in Food Science and Nutrition, 61(18), 3031-3065.
  • Domínguez-Fernández, M., Yang, P. Y. T., Ludwig, I. A., Clifford, M. N., Cid, C., & Rodriguez-Mateos, A. (2022). In vivo study of the bioavailability and metabolic profile of (poly) phenols after sous-vide artichoke consumption. Food Chemistry, 367, 130620.
  • de Souza, V. R., Pereira, P. A. P., da Silva, T. L. T., de Oliveira Lima, L. C., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156, 362-368. Ejaz, A., Waliat, S., Afzaal, M., Saeed, F., Ahmad, A., Din, A., ... & Khan, M. R. (2023). Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants (Ribes nigrum L): A comprehensive review. Food Science & Nutrition, 11(10), 5799-5817.
  • Eksi Karaagac, H., Cavus, F., Kadioglu, B., Ugur, N., Tokat, E., & Sahan, Y. (2020). Evaluation of nutritional, color and volatiles properties of currant (Ribes spp.) cultivars in Turkey. Food Science and Technology, 41(2), 304-313.
  • FAOSTAT, (2024). Food and agriculture organization of the United Nations (FAO), http://www.fao.org/ faostat /en / -data/QC, Last accessed on August 25, 2024.
  • FDA, (2020). Food and Drug Administration. Retrieved from, Daily value on the new nutrition and supplement facts labels, https://www.fda.gov/, Last accessed on August 25, 2024.
  • González, M. J. A., Carrera, C., Barbero, G. F., & Palma, M. (2022). A comparison study between ultrasound–assisted and enzyme–assisted extraction of anthocyanins from blackcurrant (Ribes nigrum L.). Food Chemistry: X, 13, 100192.
  • Hu, Y., Lin, Q., Zhao, H., Li, X., Sang, S., McClements, D. J., ... & Qiu, C. (2023). Bioaccessibility and bioavailability of phytochemicals: Influencing factors, improvements, and evaluations. Food Hydrocolloids, 135, 108165.
  • Hummer, K. E., & Dale, A. D. A. M. (2010). Horticulture of Ribes. Forest Pathology, 40(3‐4), 251-263.
  • Jo, M., Ban, C., Goh, K. K., & Choi, Y. J. (2021). Enhancement of the gut-retention time of resveratrol using waxy maize starch nanocrystal-stabilized and chitosan-coated Pickering emulsions. Food Hydrocolloids, 112, 106291.
  • Kaldmaee, H., Kikas, A., Arus, L., & Libek, A. V. (2013). Genotype and microclimate conditions influence ripening pattern and quality of blackcurrant (Ribes nigrum L.) fruit. Zemdirbyste-Agriculture, 100(2), 167-174.
  • Karlsons, A., Osvalde, A., Čekstere, G., & Pormale, J. (2018). Research on the mineral composition of cultivated and wild blueberries and cranberries. Agronomy Research, 16(2), 454-463.
  • Kowalski, R., & de Mejia, E. G. (2021). Phenolic composition, antioxidant capacity and physical characterization of ten blackcurrant (Ribes nigrum) cultivars, their juices, and the inhibition of type 2 diabetes and inflammation biochemical markers. Food Chemistry, 359, 129889.
  • Krüger, E., Dietrich, H., Hey, M., & Patz, C. D. (2012). Effects of cultivar, yield, berry weight, temperature and ripening stage on bioactive compounds of black currants. Journal of Applied Botany and Food Quality, 84(1), 40.
  • Larsson, S. C., Virtanen, M. J., Mars, M., Männistö, S., Pietinen, P., Albanes, D., & Virtamo, J. (2008). Magnesium, calcium, potassium, and sodium intakes and risk of stroke in male smokers. Archives of Internal Medicine, 168(5), 459-465.
  • Liang, X., Ye, Y., Zhu, Y., Xiao, J., & Qiao, Y. (2023). Multivariate comparative analysis of chemical constituent changes and antioxidant properties of polysaccharides in Ribes stenocarpum maxim. at different maturity stages on the Qinghai-Tibet Plateau. Scientia Horticulturae, 308, 111556.
  • Solcan, M. B., Fizeșan, I., Vlase, L., Vlase, A. M., Rusu, M. E., Mates, L., Petru, A. E., ... & Popa, D. S. (2023). Phytochemical profile and biological activities of extracts obtained from young shoots of blackcurrant (Ribes nigrum L.), european blueberry (Vaccinium myrtillus L.), and mountain cranberry (Vaccinium vitis-idaea L.). Horticulturae, 9(11), 1163.
  • Messinger, W., Hummer, K., & Liston, A. (1999). Ribes (Grossulariaceae) phylogeny as indicated by restriction-site polymorphisms of PCR-amplified chloroplast DNA. Plant Systematics and Evolution, 217, 185-195.
  • Mikulic-Petkovsek, M., Koron, D., & Veberic, R. (2016). Quality parameters of currant berries from three different cluster positions. Scientia Horticulturae, 210, 188-196.
  • Montiel-Sánchez, M., García-Cayuela, T., Gómez-Maqueo, A., García, H. S., & Cano, M. P. (2021). In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chemistry, 342, 128087.
  • Naismith, D. J., & Braschi, A. (2008). An investigation into the bioaccessibility of potassium in unprocessed fruits and vegetables. International Journal of Food Sciences and Nutrition, 59(5), 438-450.
  • Nour, V., Trandafir, I., & Ionica, M. E. (2011). Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars. Fruits, 66(5), 353-362.
  • Pantelidis, G. E., Vasilakakis, M., Manganaris, G. A., & Diamantidis, G. R. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry, 102(3), 777-783.
  • Paunovic, V., Nikolic, M., Miletić, R., & Mašković, P. (2017). Vitamin and mineral content in black currant (Ribes nigrum L.) fruits as affected by soil management system. Acta Scientiarum Polonorum Hortorum Cultus, 16(5), 135-144.
  • Pereira, C. C., da Silva, E. D. N., de Souza, A. O., Vieira, M. A., Ribeiro, A. S., & Cadore, S. (2018). Evaluation of the bioaccessibility of minerals from blackberries, raspberries, blueberries and strawberries. Journal of Food Composition and Analysis, 68, 73-78.
  • Rubinskiene, M., Viskelis, P., Jasutiene, I., Viskeliene, R., & Bobinas, C. J. F. R. I. (2005). Impact of various factors on the composition and stability of black currant anthocyanins. Food Research International, 38(8-9), 867-871.
  • Da Silva Pinto, M., Kwon, Y. I., Apostolidis, E., Lajolo, F. M., Genovese, M. I., & Shetty, K. (2010). Evaluation of red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva‐crispa) for potential management of type 2 diabetes and hypertension using in vitro models. Journal of Food Biochemistry, 34(3), 639-660.
  • Soloshenko, V. (2018). Taxonomic composition of the Ribes L. in the collecting plantations in Ukrainian botanic institutions. Revista Botanică, 17(2), 64-68.
  • Staszowska-Karkut, M., & Materska, M. (2020). Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients, 12(2), 463.
  • Tian, Y., Laaksonen, O., Haikonen, H., Vanag, A., Ejaz, H., Linderborg, K., ... & Yang, B. (2019). Compositional diversity among blackcurrant (Ribes nigrum) cultivars originating from European countries. Journal of Agricultural and Food Chemistry, 67(19), 5621-5633.
  • Tian, Y., Karhu, S., Virtanen, M., Linderborg, K. M., Yang, B., & Laaksonen, O. (2023). Variation of chemical and sensory profiles of blackcurrant (Ribes nigrum) juices produced from different cultivars of European origins. LWT, 173, 114353.
  • Trych, U., Buniowska, M., Skąpska, S., Starzonek, S., & Marszałek, K. (2020). The bioaccessibility of antioxidants in black currant puree after high hydrostatic pressure treatment. Molecules, 25(15), 3544.
  • TSE, (2001). TS 1728 ISO 1842: Meyve Sebze Urunleri -pH Tayini. Ankara: TSE.
  • Turkkomp, (2024). Ulusal Gida Kompozisyonlari Veri Tabani, http://www.turkomp.gov.tr/, Last accessed on August 25, 2024.
  • Usal, M., & Sahan, Y. (2020). In vitro evaluation of the bioaccessibility of antioxidative properties in commercially baby foods. Journal of Food Science and Technology, 57, 3493-3501.
  • USDA, (2024). U.S. Department of Agriculture, Food Data Central, https://fdc.nal.usda.gov/error.html, Last accessed on August 25, 2024.
  • Vitali, D., Dragojević, I. V., & Šebečić, B. (2009). Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chemistry, 114(4), 1462-1469.
  • Yurt, B., Behcet, L., Demir, N., & Hayaloglu, A. A. (2021). Lokal endemik Ribes anatolica Behçet (Grossulariaceae) meyvelerinin bazi fizikokimyasal özellikleri, toplam fenolik madde miktari, antioksidan kapasiteleri ve fenolik kompozisyonunun belirlenmesi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8(14), 277-282.
  • Wang, S. Y., & Zheng, W. (2001). Effect of plant growth temperature on antioxidant capacity in strawberry. Journal of Agricultural and Food Chemistry, 49(10), 4977-4982.
  • Zdunić, G., Šavikin, K., Pljevljakušić, D., & Djordjević, B. (2016). Black (Ribes nigrum L.) and red currant (Ribes rubrum L.) cultivars. In: Simmonds M. S. J., Preedy V. R. (eds) Nutritional Composition of Fruit Cultivars (pp. 101-126). Academic Press.
There are 52 citations in total.

Details

Primary Language English
Subjects Botany (Other)
Journal Section Research Articles
Authors

Asuman Cansev 0000-0002-3353-846X

Müge Kesici 0000-0001-9533-0800

Yasemin Şahan 0000-0003-3457-251X

Güler Çelik 0000-0001-8112-4096

Aysegul Akpınar 0000-0002-4606-0645

Meryem İpek 0000-0002-0609-3442

Early Pub Date August 30, 2024
Publication Date August 30, 2024
Submission Date January 2, 2024
Acceptance Date June 4, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Cansev, A., Kesici, M., Şahan, Y., Çelik, G., et al. (2024). In-vitro bioaccessibility and mineral content of two Ribes species growing in Cumalikizik village, Bursa Türkiye. Frontiers in Life Sciences and Related Technologies, 5(2), 101-107. https://doi.org/10.51753/flsrt.1413591

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.