Research Article
BibTex RIS Cite

Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet

Year 2023, , 1 - 9, 20.10.2023
https://doi.org/10.34110/forecasting.1326245

Abstract

Breast cancer is a significant global health issue and plays a crucial role in improving patient outcomes through early detection. This study aims to enhance the accuracy and efficiency of breast cancer diagnosis by investigating the application of the RetinaNet and Faster R-CNN algorithms for mass detection in mammography images. A specialized dataset was created for mass detection from mammography images and validated by an expert radiologist. The dataset was trained using RetinaNet and Faster R-CNN, a state-of-the-art object detection model. The training and testing were conducted using the Detectron2 platform. To avoid overfitting during training, data augmentation techniques available in the Detectron2 platform were used. The model was tested using the AP50, precision, recall, and F1-Score metrics. The results of the study demonstrate the success of RetinaNet in mass detection. According to the obtained results, an AP50 value of 0.568 was achieved. The precision and recall performance metrics are 0.735 and 0.60 respectively. The F1-Score metric, which indicates the balance between precision and recall, obtained a value of 0.66. These results demonstrate that RetinaNet can be a potential tool for breast cancer screening and has the potential to provide accuracy and efficiency in breast cancer diagnosis. The trained RetinaNet model was integrated into existing PACS (Picture Archiving and Communication System) systems and made ready for use in healthcare centers.

Supporting Institution

Akgün Bilgisayar A.Ş

Thanks

This study was supported by AKGUN Computer Incorporated Company. We would like to thank Akgun Computer Inc. for providing all the necessary resources and funding for the execution of this study.

References

  • K. Loizidou, R. Elia, C. Pitris, Computer-aided breast cancer detection and classification in mammography: A comprehensive review, Computers in Biology and Medicine. 153 (2023) 106554. doi:https://doi.org/10.1016/j.compbiomed.2023.106554
  • S.J. Frank, A deep learning architecture with an object-detection algorithm and a convolutional neural network for breast mass detection and visualization, Healthcare Analysis. 3 (2023) 100186. doi:https://doi.org/10.1016/j.health.2023.100186
  • J. Bai, R. Posner, T. Wang, C. Yang, S. Nabavi, Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: A review, Medical Image Analysis. 71 (2021) 102049. doi:https://doi.org/10.1016/j.media.2021.102049
  • L. Abdelrahman, M.A. Ghamdi, F.C. Mesa, M.A. Mottaleb, Convolutional neural networks for breast cancer detection in mammography: A survey, Computers in Biology and Medicine. 131 (2021) 104248. doi:https://doi.org/10.1016/j.compbiomed.2021.104248
  • L. Garrucho, K. Kushibar, S. Jouide, O. Diaz, L. Igual, K. Lekadir, Domain generalization in deep learning based mass detection in mammography: A large-scale multi-center study, Artificial Intelligence in Medicine. 132 (2022) 102386. doi:https://doi.org/10.1016/j.artmed.2022.102386
  • A. Baccouche, B.G. Zapirain, Y. Zheng, A.S. Elmaghraby, Early detection and classification of abnormality in prior mammograms using image-to-image translation and YOLO techniques, Computer Methods and Programs in Biomedicine. 221 (2022) 106884. doi:https://doi.org/10.1016/j.cmpb.2022.106884
  • S. Famouri, L. Morra, L. Mangia, F. Lamberti, Breast mass detection with faster r-cnn: On the feasibility of learning from noisy annotations, IEEE Access. 9 (2021) 66163-66175. doi:10.1109/ACCESS.2021.3072997
  • S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Transactions on Pattern Analysis and Machine Intelligence. 39 (2016) 1137-1149. doi:10.1109/TPAMI.2016.2577031
  • M. W. A. El-Soud, I. Zyout, K. M. Hosny, M. M. Eltoukhy, Fusion of orthogonal moment features for mammographic mass detection and diagnosis, IEEE Access. 8 (2020) 129911-129923. doi:10.1109/ACCESS.2020.3008038
  • S. Imran, B. A. Lodhi, A. Alzahrani, Unsupervised method to localize masses in mammograms, IEEE Access. 9 (2021) 99327-99338. doi:10.1109/ACCESS.2021.3094768
  • G. Toz, P. Erdoğmuş, A novel hybrid image segmentation method for detection of suspicious regions in mammograms based on adaptive multi-thresholding (HCOW), IEEE Access. 9 (2021) 85377-85391. doi:10.1109/ACCESS.2021.3089077
  • S. Kumbhare, A.B. Kathole, and S. Shinde, Federated-learning aided breast cancer detection with intelligent heuristic-based deep learning framework, Biomedical Signal Processing and Control. 86 (2023) 105080. doi: https://doi.org/10.1016/j.bspc.2023.105080
  • G. Huang, Z. Liu, L.V.D. Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: pp. 2261-2269. doi: 10.1109/CVPR.2017.243
  • M. Zhang, C. Wang, L. Cai, J. Zhao, Y. Xu, J. Xing, J. Sun, Y. Zhang, Developing a weakly supervised deep learning framework for breast cancer diagnosis with HR status based on mammography images, Computational and Structural Biotechnology Journal. 22 (2023) 17-36. doi: https://doi.org/10.1016/j.csbj.2023.08.012
  • J. Wu, Z. Xu, L. Shang, Z. Wang, S. Zhou, H. Shang, H. Wang, J. Yin, Multimodal microscopic imaging with deep learning for highly effective diagnosis of breast cancer, Optics and Lasers in Engineering. 168 (2023) 107667. doi: https://doi.org/10.1016/j.optlaseng.2023.107667
  • B. Asadi, Q. Memon, Efficient breast cancer detection via cascade deep learning network, International Journal of Intelligent Networks. 4 (2023) 46-52. doi: https://doi.org/10.1016/j.ijin.2023.02.001
  • O. Ronneberger, P. Fischer, T. Brox, U-Net Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Computing and Computer-Assisted Intervention MICCAI 2015, 2015: pp. 234-241. doi: https://doi.org/10.1007/978-3-319-24574-4_28
  • K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: pp. 770-778. doi:10.1109/CVPR.2016.90
  • R. S. Raaj, Breast cancer detection and diagnosis using hybrid deep learning architecture, Biomedical Signal Processing and Control. 82 (2023) 104558. doi: https://doi.org/10.1016/j.bspc.2022.104558
  • Q. Lin, W.M. Tan, J.Y. Ge, Y. Huang, Q. Xiao, Y.Y. Xu, Y.T. Jin, Z.M. Shao, Y.J. Gu, B. Yan, K.D. Yu, Artificial intelligence-based diagnosis of breast cancer by mammography microcalcification, Fundamental Research. (2023).
  • T. Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017: pp. 2999-3007. doi:10.1109/TPAMI.2018.2858826
  • G. Hamed, M. Marey, S. E. Amin, M. F. Tolba, Automated breast cancer detection and classification in full field digital mammograms using two full and cropped detection paths approach, IEEE Access. 9 (2021) 116898-116913. doi:10.1109/ACCESS.2021.3105924
  • T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: pp. 936-944. doi:10.1109/CVPR.2017.106
  • T. Miao, H. Zeng, W. Yang, B. Chu, F. Zou, W. Ren, J. Chen, An improved lightweight retinanet for ship detection in SAR images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 15 (2022) 4667-4679. doi:10.1109/JSTARS.2022.3180159
  • J. Liu, R. Jia, W. Li, F. Ma, H.M. Abdullah, H.Ma, M.A. Mohamed, High precision detection algorithm based on improved RetinaNet for defect recognition of transmission lines, Energy Reports. 6 (2020) 2430-2440. doi: https://doi.org/10.1016/j.egyr.2020.09.002
  • H. Peng, Z. Li, Z. Zhou, Y. Shao, Weed detection in paddy field using an improved RetinaNet network, Computers and Electronics in Agriculture. 199 (2022) 107179. doi: https://doi.org/10.1016/j.compag.2022.107179
  • R. Viola, L. Gautheron, A. Habrard, M. Sebban, MetaAP: A meta-tree-based ranking algorithm optimizing the average precision from imbalanced data, Pattern Recognition Letters. 161 (2022) 161-167. doi: https://doi.org/10.1016/j.patrec.2022.07.019
Year 2023, , 1 - 9, 20.10.2023
https://doi.org/10.34110/forecasting.1326245

Abstract

References

  • K. Loizidou, R. Elia, C. Pitris, Computer-aided breast cancer detection and classification in mammography: A comprehensive review, Computers in Biology and Medicine. 153 (2023) 106554. doi:https://doi.org/10.1016/j.compbiomed.2023.106554
  • S.J. Frank, A deep learning architecture with an object-detection algorithm and a convolutional neural network for breast mass detection and visualization, Healthcare Analysis. 3 (2023) 100186. doi:https://doi.org/10.1016/j.health.2023.100186
  • J. Bai, R. Posner, T. Wang, C. Yang, S. Nabavi, Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: A review, Medical Image Analysis. 71 (2021) 102049. doi:https://doi.org/10.1016/j.media.2021.102049
  • L. Abdelrahman, M.A. Ghamdi, F.C. Mesa, M.A. Mottaleb, Convolutional neural networks for breast cancer detection in mammography: A survey, Computers in Biology and Medicine. 131 (2021) 104248. doi:https://doi.org/10.1016/j.compbiomed.2021.104248
  • L. Garrucho, K. Kushibar, S. Jouide, O. Diaz, L. Igual, K. Lekadir, Domain generalization in deep learning based mass detection in mammography: A large-scale multi-center study, Artificial Intelligence in Medicine. 132 (2022) 102386. doi:https://doi.org/10.1016/j.artmed.2022.102386
  • A. Baccouche, B.G. Zapirain, Y. Zheng, A.S. Elmaghraby, Early detection and classification of abnormality in prior mammograms using image-to-image translation and YOLO techniques, Computer Methods and Programs in Biomedicine. 221 (2022) 106884. doi:https://doi.org/10.1016/j.cmpb.2022.106884
  • S. Famouri, L. Morra, L. Mangia, F. Lamberti, Breast mass detection with faster r-cnn: On the feasibility of learning from noisy annotations, IEEE Access. 9 (2021) 66163-66175. doi:10.1109/ACCESS.2021.3072997
  • S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Transactions on Pattern Analysis and Machine Intelligence. 39 (2016) 1137-1149. doi:10.1109/TPAMI.2016.2577031
  • M. W. A. El-Soud, I. Zyout, K. M. Hosny, M. M. Eltoukhy, Fusion of orthogonal moment features for mammographic mass detection and diagnosis, IEEE Access. 8 (2020) 129911-129923. doi:10.1109/ACCESS.2020.3008038
  • S. Imran, B. A. Lodhi, A. Alzahrani, Unsupervised method to localize masses in mammograms, IEEE Access. 9 (2021) 99327-99338. doi:10.1109/ACCESS.2021.3094768
  • G. Toz, P. Erdoğmuş, A novel hybrid image segmentation method for detection of suspicious regions in mammograms based on adaptive multi-thresholding (HCOW), IEEE Access. 9 (2021) 85377-85391. doi:10.1109/ACCESS.2021.3089077
  • S. Kumbhare, A.B. Kathole, and S. Shinde, Federated-learning aided breast cancer detection with intelligent heuristic-based deep learning framework, Biomedical Signal Processing and Control. 86 (2023) 105080. doi: https://doi.org/10.1016/j.bspc.2023.105080
  • G. Huang, Z. Liu, L.V.D. Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: pp. 2261-2269. doi: 10.1109/CVPR.2017.243
  • M. Zhang, C. Wang, L. Cai, J. Zhao, Y. Xu, J. Xing, J. Sun, Y. Zhang, Developing a weakly supervised deep learning framework for breast cancer diagnosis with HR status based on mammography images, Computational and Structural Biotechnology Journal. 22 (2023) 17-36. doi: https://doi.org/10.1016/j.csbj.2023.08.012
  • J. Wu, Z. Xu, L. Shang, Z. Wang, S. Zhou, H. Shang, H. Wang, J. Yin, Multimodal microscopic imaging with deep learning for highly effective diagnosis of breast cancer, Optics and Lasers in Engineering. 168 (2023) 107667. doi: https://doi.org/10.1016/j.optlaseng.2023.107667
  • B. Asadi, Q. Memon, Efficient breast cancer detection via cascade deep learning network, International Journal of Intelligent Networks. 4 (2023) 46-52. doi: https://doi.org/10.1016/j.ijin.2023.02.001
  • O. Ronneberger, P. Fischer, T. Brox, U-Net Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Computing and Computer-Assisted Intervention MICCAI 2015, 2015: pp. 234-241. doi: https://doi.org/10.1007/978-3-319-24574-4_28
  • K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: pp. 770-778. doi:10.1109/CVPR.2016.90
  • R. S. Raaj, Breast cancer detection and diagnosis using hybrid deep learning architecture, Biomedical Signal Processing and Control. 82 (2023) 104558. doi: https://doi.org/10.1016/j.bspc.2022.104558
  • Q. Lin, W.M. Tan, J.Y. Ge, Y. Huang, Q. Xiao, Y.Y. Xu, Y.T. Jin, Z.M. Shao, Y.J. Gu, B. Yan, K.D. Yu, Artificial intelligence-based diagnosis of breast cancer by mammography microcalcification, Fundamental Research. (2023).
  • T. Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object detection, in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017: pp. 2999-3007. doi:10.1109/TPAMI.2018.2858826
  • G. Hamed, M. Marey, S. E. Amin, M. F. Tolba, Automated breast cancer detection and classification in full field digital mammograms using two full and cropped detection paths approach, IEEE Access. 9 (2021) 116898-116913. doi:10.1109/ACCESS.2021.3105924
  • T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: pp. 936-944. doi:10.1109/CVPR.2017.106
  • T. Miao, H. Zeng, W. Yang, B. Chu, F. Zou, W. Ren, J. Chen, An improved lightweight retinanet for ship detection in SAR images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 15 (2022) 4667-4679. doi:10.1109/JSTARS.2022.3180159
  • J. Liu, R. Jia, W. Li, F. Ma, H.M. Abdullah, H.Ma, M.A. Mohamed, High precision detection algorithm based on improved RetinaNet for defect recognition of transmission lines, Energy Reports. 6 (2020) 2430-2440. doi: https://doi.org/10.1016/j.egyr.2020.09.002
  • H. Peng, Z. Li, Z. Zhou, Y. Shao, Weed detection in paddy field using an improved RetinaNet network, Computers and Electronics in Agriculture. 199 (2022) 107179. doi: https://doi.org/10.1016/j.compag.2022.107179
  • R. Viola, L. Gautheron, A. Habrard, M. Sebban, MetaAP: A meta-tree-based ranking algorithm optimizing the average precision from imbalanced data, Pattern Recognition Letters. 161 (2022) 161-167. doi: https://doi.org/10.1016/j.patrec.2022.07.019
There are 27 citations in total.

Details

Primary Language English
Subjects Deep Learning, Machine Vision
Journal Section Articles
Authors

Semih Demirel 0000-0002-3454-3631

Ataberk Urfalı 0000-0001-5709-6718

Ömer Faruk Bozkır 0000-0002-3696-3613

Azer Çelikten 0000-0002-6804-737X

Abdulkadir Budak 0000-0002-0328-6783

Hakan Karataş 0000-0002-9497-5444

Early Pub Date December 17, 2023
Publication Date October 20, 2023
Submission Date July 12, 2023
Acceptance Date October 17, 2023
Published in Issue Year 2023

Cite

APA Demirel, S., Urfalı, A., Bozkır, Ö. F., Çelikten, A., et al. (2023). Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet. Turkish Journal of Forecasting, 07(1), 1-9. https://doi.org/10.34110/forecasting.1326245
AMA Demirel S, Urfalı A, Bozkır ÖF, Çelikten A, Budak A, Karataş H. Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet. TJF. October 2023;07(1):1-9. doi:10.34110/forecasting.1326245
Chicago Demirel, Semih, Ataberk Urfalı, Ömer Faruk Bozkır, Azer Çelikten, Abdulkadir Budak, and Hakan Karataş. “Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet”. Turkish Journal of Forecasting 07, no. 1 (October 2023): 1-9. https://doi.org/10.34110/forecasting.1326245.
EndNote Demirel S, Urfalı A, Bozkır ÖF, Çelikten A, Budak A, Karataş H (October 1, 2023) Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet. Turkish Journal of Forecasting 07 1 1–9.
IEEE S. Demirel, A. Urfalı, Ö. F. Bozkır, A. Çelikten, A. Budak, and H. Karataş, “Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet”, TJF, vol. 07, no. 1, pp. 1–9, 2023, doi: 10.34110/forecasting.1326245.
ISNAD Demirel, Semih et al. “Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet”. Turkish Journal of Forecasting 07/1 (October 2023), 1-9. https://doi.org/10.34110/forecasting.1326245.
JAMA Demirel S, Urfalı A, Bozkır ÖF, Çelikten A, Budak A, Karataş H. Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet. TJF. 2023;07:1–9.
MLA Demirel, Semih et al. “Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet”. Turkish Journal of Forecasting, vol. 07, no. 1, 2023, pp. 1-9, doi:10.34110/forecasting.1326245.
Vancouver Demirel S, Urfalı A, Bozkır ÖF, Çelikten A, Budak A, Karataş H. Improving Mass Detection in Mammography Using Focal Loss Based RetinaNet. TJF. 2023;07(1):1-9.

INDEXING

   16153                        16126   

  16127                       16128                       16129