Research Article
BibTex RIS Cite
Year 2018, , 1 - 8, 01.09.2018
https://doi.org/10.34110/forecasting.420126

Abstract

References

  • 1. Alexander, C. and Lazar, E., 2006, Normal mixture GARCH (1, 1): application to exchange rate modeling. Journal of Applied Econometrics Economic Review, 39: 885–905.
  • 2. Alexander, C. and Lazar, E., 2004, The equity index skew, market crashes and asymmetric normal mixture GARCH. ISMA Center Discussion Papers in Finance, 14.
  • 3. Andersen, T. G. and Bollerslev, T., 1998, Answering the skeptics: Yes, standard volatility models provide accurate forecasts. International Economic Review, 39: 885-905.
  • 4. Baillie, R. T. and Bollerslev, T., 1989, Common stochastic trends in a system of exchange rates. Journal of Monetary Economics, 44: 167-181.
  • 5. Baillie, R. T., Bollerslev, T. and Mikkelsen, H. O., 1996, Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74: 3-30.
  • 6. Bollerslev, T., 1986, Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31: 307-327.
  • 7. Bollerslev, T. and Mikkelsen, H. O., 1996, Modeling and pricing long memory in stock market volatility. Journal of Econometrics, Elsevier, vol. 73(1): 151-184.
  • 8. Bollerslev, T., Chou, R. Y. and Kroner, K. F., 1992, ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52: 5-59.
  • 9. Engle, R. F., 1982, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrics, 50: 987–1007.
  • 10. Engle, R. F. and Bollerslev, T., 1986, Modeling the persistence of conditional variances, Econometric Reviews. Taylor and Francis Journals, vol. 5(1): 1-50.
  • 11. Engle, R. F., 2001, GARCH 101: The use of ARCH/GARCH models in applied econometrics. Journal of Economic Perspectives, vol. 15(4): 157–168.
  • 12. Engle, R. F., 2002, New frontiers for ARCH models. Journal of Applied Econometrics, 17:425–446.
  • 13. Glosten, L., Jangannathan, R. and Runkle, D., 1993, On the relation between excepted value and the volatility of the nominal excess return of stocks. Journal of Finance, 48:1779-1801.
  • 14. Jiang, W. 2012, Using the GARCH model to analyze and predict the different stock markets, Master thesis, Uppsala university.
  • 15. Nelson, D., 1991, Conditional heteroscedasticity in asset returns: a new approach. Econometrics, 59: 349–370.
  • 16. Wang, K-L, Fawson, C., Barrett, C.B. and J. B. McDonald (2001). A flexible parametric GARCH model with an application to exchange rates. Journal of Applied Econometrics, 16, 521-536.
  • 17. Wang, Y., F., Cheng, S., Hsu, M., H. 2010, Incorporating the Markov chain concept into fuzzy stochastic prediction of stock indexes, Applied Soft Computing, 10, 613–617

Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods

Year 2018, , 1 - 8, 01.09.2018
https://doi.org/10.34110/forecasting.420126

Abstract

Prediction
of stock market value is one the most complicated issue during the past
decades. Due to its importance, in this research,
we consider the prediction of stock values based on non-parametric and
parametric methods. In this first method,
we use the fuzzy Markov chain procedure in order to prediction problem. In this
regard, all of the rising and falling probabilities during the weekdays are calculated and then they applied
to obtain the increasing and decreasing rate. Then, based on this information
we model and predict the stock values. In the sequel, we implement different
methods of parametric time series such as generalized autoregressive conditionally heteroskedastic (GARCH), ARIMA-GARCH,
Exponential GARCH (E-GARCH) and GJR-GARCH by assuming the normal and t-student
distribution for the error terms to obtain the best model in terms of minimum
mean square errors. Finally, the mythologies developed here are applied for the
Tehran Stock Exchange Index (TEDPIX).

References

  • 1. Alexander, C. and Lazar, E., 2006, Normal mixture GARCH (1, 1): application to exchange rate modeling. Journal of Applied Econometrics Economic Review, 39: 885–905.
  • 2. Alexander, C. and Lazar, E., 2004, The equity index skew, market crashes and asymmetric normal mixture GARCH. ISMA Center Discussion Papers in Finance, 14.
  • 3. Andersen, T. G. and Bollerslev, T., 1998, Answering the skeptics: Yes, standard volatility models provide accurate forecasts. International Economic Review, 39: 885-905.
  • 4. Baillie, R. T. and Bollerslev, T., 1989, Common stochastic trends in a system of exchange rates. Journal of Monetary Economics, 44: 167-181.
  • 5. Baillie, R. T., Bollerslev, T. and Mikkelsen, H. O., 1996, Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74: 3-30.
  • 6. Bollerslev, T., 1986, Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31: 307-327.
  • 7. Bollerslev, T. and Mikkelsen, H. O., 1996, Modeling and pricing long memory in stock market volatility. Journal of Econometrics, Elsevier, vol. 73(1): 151-184.
  • 8. Bollerslev, T., Chou, R. Y. and Kroner, K. F., 1992, ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52: 5-59.
  • 9. Engle, R. F., 1982, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrics, 50: 987–1007.
  • 10. Engle, R. F. and Bollerslev, T., 1986, Modeling the persistence of conditional variances, Econometric Reviews. Taylor and Francis Journals, vol. 5(1): 1-50.
  • 11. Engle, R. F., 2001, GARCH 101: The use of ARCH/GARCH models in applied econometrics. Journal of Economic Perspectives, vol. 15(4): 157–168.
  • 12. Engle, R. F., 2002, New frontiers for ARCH models. Journal of Applied Econometrics, 17:425–446.
  • 13. Glosten, L., Jangannathan, R. and Runkle, D., 1993, On the relation between excepted value and the volatility of the nominal excess return of stocks. Journal of Finance, 48:1779-1801.
  • 14. Jiang, W. 2012, Using the GARCH model to analyze and predict the different stock markets, Master thesis, Uppsala university.
  • 15. Nelson, D., 1991, Conditional heteroscedasticity in asset returns: a new approach. Econometrics, 59: 349–370.
  • 16. Wang, K-L, Fawson, C., Barrett, C.B. and J. B. McDonald (2001). A flexible parametric GARCH model with an application to exchange rates. Journal of Applied Econometrics, 16, 521-536.
  • 17. Wang, Y., F., Cheng, S., Hsu, M., H. 2010, Incorporating the Markov chain concept into fuzzy stochastic prediction of stock indexes, Applied Soft Computing, 10, 613–617
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Reza Arabi Belaghi This is me

Minoo Aminnejad This is me

Özlem Gürünlü Alma

Publication Date September 1, 2018
Submission Date May 1, 2018
Acceptance Date August 29, 2018
Published in Issue Year 2018

Cite

APA Arabi Belaghi, R., Aminnejad, M., & Gürünlü Alma, Ö. (2018). Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods. Turkish Journal of Forecasting, 02(1), 1-8. https://doi.org/10.34110/forecasting.420126
AMA Arabi Belaghi R, Aminnejad M, Gürünlü Alma Ö. Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods. TJF. September 2018;02(1):1-8. doi:10.34110/forecasting.420126
Chicago Arabi Belaghi, Reza, Minoo Aminnejad, and Özlem Gürünlü Alma. “Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods”. Turkish Journal of Forecasting 02, no. 1 (September 2018): 1-8. https://doi.org/10.34110/forecasting.420126.
EndNote Arabi Belaghi R, Aminnejad M, Gürünlü Alma Ö (September 1, 2018) Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods. Turkish Journal of Forecasting 02 1 1–8.
IEEE R. Arabi Belaghi, M. Aminnejad, and Ö. Gürünlü Alma, “Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods”, TJF, vol. 02, no. 1, pp. 1–8, 2018, doi: 10.34110/forecasting.420126.
ISNAD Arabi Belaghi, Reza et al. “Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods”. Turkish Journal of Forecasting 02/1 (September 2018), 1-8. https://doi.org/10.34110/forecasting.420126.
JAMA Arabi Belaghi R, Aminnejad M, Gürünlü Alma Ö. Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods. TJF. 2018;02:1–8.
MLA Arabi Belaghi, Reza et al. “Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods”. Turkish Journal of Forecasting, vol. 02, no. 1, 2018, pp. 1-8, doi:10.34110/forecasting.420126.
Vancouver Arabi Belaghi R, Aminnejad M, Gürünlü Alma Ö. Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods. TJF. 2018;02(1):1-8.

INDEXING

   16153                        16126   

  16127                       16128                       16129