Research Article
BibTex RIS Cite

Chlamydomonas Suşlarının Farklı Kültür Besi Ortamları ve Doğal Mineralli Su Kullanılarak Biyomas ve Üreme Oranlarının Artırılması

Year 2018, Volume: 30 Issue: 2, 63 - 71, 19.09.2018

Abstract

Bu çalışmada; mikroalg kültürlerinin üremeleri üzerine farklı besi
ortamlarının etkileri ve farklı suşların üreme kabiliyetleri gözlemlenmiştir. Chlamydomonas fotosentetik, tek
hücreli, ökaryotik yeşil algdir. Genetik, biyokimyasal ve fotosentez çalışmalarında
hızlı büyümesi, kısa üreme döngüsüne sahip olması ve düşük maliyetli kültürünün
yapılabilmesi nedeniyle cazip bir çalışma materyalidir. Çalışmamızda tatlı su
birikintilerinden toplanan örneklerden Chlamydomonas cinsine ait iki suş
izole edilmiştir. İzole edilen bu suşlar laboratuvar şartlarında, BG 11 ve
Allen besi ortamları ile, doğal mineralli su kullanılarak üretilmiştir. Farklı
besi ortamlarının Chlamydomonas’ın üreme dinamikleri üzerindeki etkileri
hücre yoğunluğu, klorofil-a, kuru ağırlık ve optik yoğunluk tayinleri
ile yapılmıştır. Chlamydomonas sp.1 (CCA02Chl01) suşu en iyi
gelişmeyi Allen besi ortamında göstermiştir. Chlamydomonas
sp.1 (CCA02Chl01)
suşunun Allen besi ortamındaki hücre yoğunluğu
(3,95x106hücre/mL), klorofil-a miktarı (3,166 µgL-1),
kuru ağırlık (0,5347 g/mL) ve 685 nm’de optikal yoğunluk (0,5115 d-1) olarak en yüksek
bulunmuştur. Chlamydomonas sp.2 (CCA02Chl02) suşunun en iyi gelişmesi
ise BG 11 besi ortamında olmuştur. Chlamydomonas sp.2 (CCA02Chl02)
suşunun BG 11 besi ortamındaki hücre yoğunluğu (6,0x106 hücre/mL),
klorofil-a miktarı (6,343 µgL-1), kuru ağırlığı (0,5425 g/mL) ve 685
nm’de optikal yoğunluğu (0,7986 d-1)
olarak bulunmuştur. 

References

  • 1. Lewis, M.A. (1995). Use of freshwater plants for phytotoxicity testing: a review. Environmental Pollution, 87: 319-336. 2. Fuentes-Grünewald, C., Alacid, E., Garcés, E., Rossi, S. and Camp, J. (2012). Biomass and lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors. Marine Biotechnology, 15: 37-47. 3. Santhosh, S., Dhandapani, R. and Hemalatha, N. (2016). A Review on potential biotechnological applications of microalgae. Journal of Applied Pharmaceutical Science, 6: 179-184. 4. Chuntapa, D., Powtongsook, S. and Menasveta, P. (2003). Water quality control using Spirulina platensis in shrimp culture tanks. Aquaculture, 220: 355-366. 5. Brown, M. and Robert, R. (2002). Preparation and assessment of microalgal concentrates as feeds for larval and juvenile pacific oyster (Crassostrea gigas). Aquaculture, 207: 289-309. 6. Stephens, E., Ross, I.L., Mussgnug, J.H., Wagner, L.D, Borowitzka, M.A., Posten, C., Kruse, O. and Hankamer, B. (2010). Future prospects of microalgal biofuel production systems. Trends Plant Science, 15: 554-564. 7. Gross, C.H., Ranum, L.P.W. and Lefebvre, P.A. (1988). Extensive restriction fragment length polymorphisms in a new isolate of Chlamydomonas reinhardtii. Current Genetics, 13:503-508. 8. Scholz, M., Hoshino, T., Johnson, D., Riley, M.R. and Cuello, J. (2011). Flocculation of wall-deficient cells of Chlamydomonas reinhardtii mutant cw15 by calcium and methanol. Biomass and Bioenergy, 35: 4835-4840. doi: 10.1016/j.biombioe.2011.08.020. 9. Duong, V.T., Li, Y., Nowak, E. and Schenk, P.M. (2012). Microalgae isolation and selection for prospective biodiesel production. Energies, 5: 1835-1849. doi:10.3390/en50618 35. 10. Tamburic, B., Zemichael, F.W., Maitland, G.C. and Hellgardt, K. (2012). Effect of the light regime and phototrophic conditions on growth of the H2-producing green alga Chlamydomonas reinhardtii. Energy Procedia, 29: 710-719. doi: 10.1016/j. egypro.2012.09.083. 11. Merchant, S., Prochnik, S., Vallon, O., Harris, E., Karpowicz, S., Witman, G., Terry, A., Salamov, A., Fritz-Laylin, L. and Marechal-Drouard, L. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318: 245-250. 12. Bhamawat, P.M. (2010). Growth of Chlamydomonas reinhardtii under nutrient-limited conditions in steady-state bioreactors. Master of Science Thesis. Faculty of the Graduate School of Cornell University, p: 1-83. 13. Meslet-Cladiere, L., and Vallon, O. (2011). Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii. Eukaryot Cell, 10: 1670-1678. 14. Duygu Yalçın, D., Erkaya Açıkgöz, İ. and Özer, T. (2018). Investigating the effect of different gorwth media on biomass production of Pseudopediastrum boryanum (Turpin) E. Hegewald isolates. Journal of Limnology and Freshwater Fisheries Research, 4: 6-12. 15. Parvin, M., Zannat, M.N. and Habib, M.A.B. (2007). Two important technique for isolation of microalgae. Asian Fisheries Science. 20: 117-124. 16. Guillard, R.R.L., Sierachiki, M.S. (2005). Counting cells in cultures with the light microscope. Pp. 239-252. In: Andersen, R.A. (eds) Algal Culturing Techniques. Elsevier Academic Press, London, 589 pp. 17. Hipkins, M.F. and Baker, N.R. (1986). Photosynthesis: Energy Transduction: A Practical Approach. Oxford University Press, London, 212 pp. 18. Chia, M.A., Lombardi, A.T. and Melao, M.G.G. (2013). Growth and biochemical composition of Chlorella vulgaris in different growth media. Annals of the Brazilian Academy of Sciences 85: 1427-38. doi: 10.1590/0001-3765201393312. 19. Santos-Ballardo, D.U., Víctor Hernández, S.R., Gómez R.V., Rendón-Unceta, M.C., Corrales, J.C. and Valdez-Ortiz, A. (2015). A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture, 448: 87-92. 20. Ribeiro-Rodrigues, L.H., Arenzon, A., Raya-Rodriguez, M.T. & Fontoura, N.F. (2011). Algal density assessed by spectrophotometry: a calibration curve for the unicellular algae Pseudokirchneriella subcapitata. Journal of Environmental Chemistry and Ecotoxicology, 3: 225-228. 21. Godoy-Hernández, G. and Vázquez-Flota, F.A. (2006). Growth measurements: estimation of cell division and cell expansion. Pp. 51-58. In: Loyola-Vargas, V.M. & Vázquez-Flota, F. (eds) Methods in Molecular Biology. Humana Press Inc., New Jersey, 318 pp. 22. Lemaire, S., Collin, V., Keryer, E., Issakidis-Bourguet, E., Lavergne, D., and Miginiac-Maslow, M. (2003). Chlamydomonas reinhardtii: a model organism for the study of the thioredoxin family. Plant Physiology and Biochemistry, 41: 513-521. 23. Mayfield, S., Manuell, A., Chen, S., Wu, J., Tran, M., Siefker, D., Muto, M., & Marin-Navarro, J. (2007). Chlamydomonas reinhardtii chloroplasts as protein factories. Current Opinion in Biotechnology, 18: 126-133. doi:10.1016/j.copbio.2007.02.001. 24. Michelle, A., Everroad, R.C. and Wingard, L.M. (2005). Measuring Growth Rates in Microalgal Cultures. Pp. 269-287. In: Andersen, R.A. (eds). Algal Culturing Techniques. Elsevier Academic Press, London, 589 pp. 25. Ammar, S.H. (2016). Cultivation of microalgae Chlorella vulgaris in airlift photobioreactor for biomass production using commercial NPK nutrients. Al-Khwarizmi Engineering Journal, 12: 90- 99. 26. Deng, X., Zhou, Y., Li, Y. and Fei, X. (2012). Optimization of the culture conditions of a Chlamydomonas high oil content ultraviolet mutant CC124-M25 and polymorphism analysis by inter-simple sequence repeat (ISSR). African Journal of Microbiology Research, 6: 3604-3619. 27. Blair, M.F., Kokabian, B. and Gude, V.G. (2013). Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2: 665-674. doi:10.1016/j. jece.2013.11.005 28. Taghavi, N. and Robinson, G. (2016). Improving the optimum yield and growth of Chlamydomonas reinhardtii CC125 and CW15 using various carbon sources and growth regimes. African Journal of Biotechnology, 15: 1083-1100. 29. Kropat, J., Hong-Hermesdorf, A., Casero, D., Ent, P., Castruita, M., Pellegrini, M., Merchant, S.S. and Malasarn, D. (2011). A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. The Plant Journal, 66: 770-780. 30. Chen, F., and Johns, M. (1996). Relationship between substrate inhibition and maintenance energy of Chlamydomonas reinhardtii in heterotrophic culture. Journal of Applied Phycology, 8: 15-19. 31. Therien, J.B., Zadvornyy, O.A., Posewitz, M.C., Bryant, D.A. and Peters, J.W. (2014). Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechoccus sp. PCC 7002. Biotechnology for Biofuels, 7: 1-8. doi: 10.1186/s13068-014-0154-2. 32. Wu, Y., Li, P. and Zhao, X. (2007). Effect of fluoride on carbonic anhydrase activity and photosynthetic oxygen evolution of the algae Chlamydomonas reinhardtii. Fluoride, 40: 51-54. 33. Al-Shatri, A.H.A., Ali, E., Al-Shorgani, N.K.N. and Kalil, M.S. (2014). Growth of Scenedesmus dimorphus in different algal media and pH profile due to secreted metabolites. African Journal of Biotechnology, 13:1714-1720. doi:10. 5897/AJB2013.13455. 34. Nehul, J.N. (2014). Influence of various culture media on growth and production of carotenoids in a cyanobacterium Lyngbya bipunctata Lemm. Bioscience Discovery, 5:60-63. 35. Havlik, I., Lindner, P., Scheper, T. and Reardon, K.F. (2013). On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnology, 31: 406-414. 36. Fischer, B.B., Wiesendanger, M. & Eggen, R.I.L. (2006). Growth condition-dependent sensitivity, photodamage and strees response of Chlamydomonas reinhardtii exposed to high light conditions. Plant and Cell Phsiology, 47: 1135-1145.
Year 2018, Volume: 30 Issue: 2, 63 - 71, 19.09.2018

Abstract

References

  • 1. Lewis, M.A. (1995). Use of freshwater plants for phytotoxicity testing: a review. Environmental Pollution, 87: 319-336. 2. Fuentes-Grünewald, C., Alacid, E., Garcés, E., Rossi, S. and Camp, J. (2012). Biomass and lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors. Marine Biotechnology, 15: 37-47. 3. Santhosh, S., Dhandapani, R. and Hemalatha, N. (2016). A Review on potential biotechnological applications of microalgae. Journal of Applied Pharmaceutical Science, 6: 179-184. 4. Chuntapa, D., Powtongsook, S. and Menasveta, P. (2003). Water quality control using Spirulina platensis in shrimp culture tanks. Aquaculture, 220: 355-366. 5. Brown, M. and Robert, R. (2002). Preparation and assessment of microalgal concentrates as feeds for larval and juvenile pacific oyster (Crassostrea gigas). Aquaculture, 207: 289-309. 6. Stephens, E., Ross, I.L., Mussgnug, J.H., Wagner, L.D, Borowitzka, M.A., Posten, C., Kruse, O. and Hankamer, B. (2010). Future prospects of microalgal biofuel production systems. Trends Plant Science, 15: 554-564. 7. Gross, C.H., Ranum, L.P.W. and Lefebvre, P.A. (1988). Extensive restriction fragment length polymorphisms in a new isolate of Chlamydomonas reinhardtii. Current Genetics, 13:503-508. 8. Scholz, M., Hoshino, T., Johnson, D., Riley, M.R. and Cuello, J. (2011). Flocculation of wall-deficient cells of Chlamydomonas reinhardtii mutant cw15 by calcium and methanol. Biomass and Bioenergy, 35: 4835-4840. doi: 10.1016/j.biombioe.2011.08.020. 9. Duong, V.T., Li, Y., Nowak, E. and Schenk, P.M. (2012). Microalgae isolation and selection for prospective biodiesel production. Energies, 5: 1835-1849. doi:10.3390/en50618 35. 10. Tamburic, B., Zemichael, F.W., Maitland, G.C. and Hellgardt, K. (2012). Effect of the light regime and phototrophic conditions on growth of the H2-producing green alga Chlamydomonas reinhardtii. Energy Procedia, 29: 710-719. doi: 10.1016/j. egypro.2012.09.083. 11. Merchant, S., Prochnik, S., Vallon, O., Harris, E., Karpowicz, S., Witman, G., Terry, A., Salamov, A., Fritz-Laylin, L. and Marechal-Drouard, L. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318: 245-250. 12. Bhamawat, P.M. (2010). Growth of Chlamydomonas reinhardtii under nutrient-limited conditions in steady-state bioreactors. Master of Science Thesis. Faculty of the Graduate School of Cornell University, p: 1-83. 13. Meslet-Cladiere, L., and Vallon, O. (2011). Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii. Eukaryot Cell, 10: 1670-1678. 14. Duygu Yalçın, D., Erkaya Açıkgöz, İ. and Özer, T. (2018). Investigating the effect of different gorwth media on biomass production of Pseudopediastrum boryanum (Turpin) E. Hegewald isolates. Journal of Limnology and Freshwater Fisheries Research, 4: 6-12. 15. Parvin, M., Zannat, M.N. and Habib, M.A.B. (2007). Two important technique for isolation of microalgae. Asian Fisheries Science. 20: 117-124. 16. Guillard, R.R.L., Sierachiki, M.S. (2005). Counting cells in cultures with the light microscope. Pp. 239-252. In: Andersen, R.A. (eds) Algal Culturing Techniques. Elsevier Academic Press, London, 589 pp. 17. Hipkins, M.F. and Baker, N.R. (1986). Photosynthesis: Energy Transduction: A Practical Approach. Oxford University Press, London, 212 pp. 18. Chia, M.A., Lombardi, A.T. and Melao, M.G.G. (2013). Growth and biochemical composition of Chlorella vulgaris in different growth media. Annals of the Brazilian Academy of Sciences 85: 1427-38. doi: 10.1590/0001-3765201393312. 19. Santos-Ballardo, D.U., Víctor Hernández, S.R., Gómez R.V., Rendón-Unceta, M.C., Corrales, J.C. and Valdez-Ortiz, A. (2015). A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture, 448: 87-92. 20. Ribeiro-Rodrigues, L.H., Arenzon, A., Raya-Rodriguez, M.T. & Fontoura, N.F. (2011). Algal density assessed by spectrophotometry: a calibration curve for the unicellular algae Pseudokirchneriella subcapitata. Journal of Environmental Chemistry and Ecotoxicology, 3: 225-228. 21. Godoy-Hernández, G. and Vázquez-Flota, F.A. (2006). Growth measurements: estimation of cell division and cell expansion. Pp. 51-58. In: Loyola-Vargas, V.M. & Vázquez-Flota, F. (eds) Methods in Molecular Biology. Humana Press Inc., New Jersey, 318 pp. 22. Lemaire, S., Collin, V., Keryer, E., Issakidis-Bourguet, E., Lavergne, D., and Miginiac-Maslow, M. (2003). Chlamydomonas reinhardtii: a model organism for the study of the thioredoxin family. Plant Physiology and Biochemistry, 41: 513-521. 23. Mayfield, S., Manuell, A., Chen, S., Wu, J., Tran, M., Siefker, D., Muto, M., & Marin-Navarro, J. (2007). Chlamydomonas reinhardtii chloroplasts as protein factories. Current Opinion in Biotechnology, 18: 126-133. doi:10.1016/j.copbio.2007.02.001. 24. Michelle, A., Everroad, R.C. and Wingard, L.M. (2005). Measuring Growth Rates in Microalgal Cultures. Pp. 269-287. In: Andersen, R.A. (eds). Algal Culturing Techniques. Elsevier Academic Press, London, 589 pp. 25. Ammar, S.H. (2016). Cultivation of microalgae Chlorella vulgaris in airlift photobioreactor for biomass production using commercial NPK nutrients. Al-Khwarizmi Engineering Journal, 12: 90- 99. 26. Deng, X., Zhou, Y., Li, Y. and Fei, X. (2012). Optimization of the culture conditions of a Chlamydomonas high oil content ultraviolet mutant CC124-M25 and polymorphism analysis by inter-simple sequence repeat (ISSR). African Journal of Microbiology Research, 6: 3604-3619. 27. Blair, M.F., Kokabian, B. and Gude, V.G. (2013). Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2: 665-674. doi:10.1016/j. jece.2013.11.005 28. Taghavi, N. and Robinson, G. (2016). Improving the optimum yield and growth of Chlamydomonas reinhardtii CC125 and CW15 using various carbon sources and growth regimes. African Journal of Biotechnology, 15: 1083-1100. 29. Kropat, J., Hong-Hermesdorf, A., Casero, D., Ent, P., Castruita, M., Pellegrini, M., Merchant, S.S. and Malasarn, D. (2011). A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. The Plant Journal, 66: 770-780. 30. Chen, F., and Johns, M. (1996). Relationship between substrate inhibition and maintenance energy of Chlamydomonas reinhardtii in heterotrophic culture. Journal of Applied Phycology, 8: 15-19. 31. Therien, J.B., Zadvornyy, O.A., Posewitz, M.C., Bryant, D.A. and Peters, J.W. (2014). Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechoccus sp. PCC 7002. Biotechnology for Biofuels, 7: 1-8. doi: 10.1186/s13068-014-0154-2. 32. Wu, Y., Li, P. and Zhao, X. (2007). Effect of fluoride on carbonic anhydrase activity and photosynthetic oxygen evolution of the algae Chlamydomonas reinhardtii. Fluoride, 40: 51-54. 33. Al-Shatri, A.H.A., Ali, E., Al-Shorgani, N.K.N. and Kalil, M.S. (2014). Growth of Scenedesmus dimorphus in different algal media and pH profile due to secreted metabolites. African Journal of Biotechnology, 13:1714-1720. doi:10. 5897/AJB2013.13455. 34. Nehul, J.N. (2014). Influence of various culture media on growth and production of carotenoids in a cyanobacterium Lyngbya bipunctata Lemm. Bioscience Discovery, 5:60-63. 35. Havlik, I., Lindner, P., Scheper, T. and Reardon, K.F. (2013). On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnology, 31: 406-414. 36. Fischer, B.B., Wiesendanger, M. & Eggen, R.I.L. (2006). Growth condition-dependent sensitivity, photodamage and strees response of Chlamydomonas reinhardtii exposed to high light conditions. Plant and Cell Phsiology, 47: 1135-1145.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section FBD
Authors

Dilek Yalçın Duygu

Tülay Özer This is me

Publication Date September 19, 2018
Submission Date March 6, 2018
Published in Issue Year 2018 Volume: 30 Issue: 2

Cite

APA Yalçın Duygu, D., & Özer, T. (2018). Chlamydomonas Suşlarının Farklı Kültür Besi Ortamları ve Doğal Mineralli Su Kullanılarak Biyomas ve Üreme Oranlarının Artırılması. Fırat Üniversitesi Fen Bilimleri Dergisi, 30(2), 63-71.
AMA Yalçın Duygu D, Özer T. Chlamydomonas Suşlarının Farklı Kültür Besi Ortamları ve Doğal Mineralli Su Kullanılarak Biyomas ve Üreme Oranlarının Artırılması. Fırat Üniversitesi Fen Bilimleri Dergisi. September 2018;30(2):63-71.
Chicago Yalçın Duygu, Dilek, and Tülay Özer. “Chlamydomonas Suşlarının Farklı Kültür Besi Ortamları Ve Doğal Mineralli Su Kullanılarak Biyomas Ve Üreme Oranlarının Artırılması”. Fırat Üniversitesi Fen Bilimleri Dergisi 30, no. 2 (September 2018): 63-71.
EndNote Yalçın Duygu D, Özer T (September 1, 2018) Chlamydomonas Suşlarının Farklı Kültür Besi Ortamları ve Doğal Mineralli Su Kullanılarak Biyomas ve Üreme Oranlarının Artırılması. Fırat Üniversitesi Fen Bilimleri Dergisi 30 2 63–71.
IEEE D. Yalçın Duygu and T. Özer, “Chlamydomonas Suşlarının Farklı Kültür Besi Ortamları ve Doğal Mineralli Su Kullanılarak Biyomas ve Üreme Oranlarının Artırılması”, Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 30, no. 2, pp. 63–71, 2018.
ISNAD Yalçın Duygu, Dilek - Özer, Tülay. “Chlamydomonas Suşlarının Farklı Kültür Besi Ortamları Ve Doğal Mineralli Su Kullanılarak Biyomas Ve Üreme Oranlarının Artırılması”. Fırat Üniversitesi Fen Bilimleri Dergisi 30/2 (September 2018), 63-71.
JAMA Yalçın Duygu D, Özer T. Chlamydomonas Suşlarının Farklı Kültür Besi Ortamları ve Doğal Mineralli Su Kullanılarak Biyomas ve Üreme Oranlarının Artırılması. Fırat Üniversitesi Fen Bilimleri Dergisi. 2018;30:63–71.
MLA Yalçın Duygu, Dilek and Tülay Özer. “Chlamydomonas Suşlarının Farklı Kültür Besi Ortamları Ve Doğal Mineralli Su Kullanılarak Biyomas Ve Üreme Oranlarının Artırılması”. Fırat Üniversitesi Fen Bilimleri Dergisi, vol. 30, no. 2, 2018, pp. 63-71.
Vancouver Yalçın Duygu D, Özer T. Chlamydomonas Suşlarının Farklı Kültür Besi Ortamları ve Doğal Mineralli Su Kullanılarak Biyomas ve Üreme Oranlarının Artırılması. Fırat Üniversitesi Fen Bilimleri Dergisi. 2018;30(2):63-71.