Research Article
BibTex RIS Cite

Investigation of Compressive Strength and Energy Absorption of Cylinder Corrugated Sandwich Structures with Different Geometric Configurations

Year 2025, Volume: 4 Issue: 1, 115 - 135, 18.02.2025
https://doi.org/10.62520/fujece.1516879

Abstract

The aim of this study is to numerically investigate and compare the compressive strength and energy absorption of CFRP composite cylinder sandwich structures with five different geometric configurations. The crushing performances (Peak crushing force (PCF), Mean crushing force (MCF), Crushing force efficiency (CFE), energy absorption (EA) and specific energy absorption (SEA)) of the composite cylinder for different core configurations and the failure types were determined. Compression analyses were performed in LS DYNA finite element program using MAT-54 material model with progressive failure analysis based on the combination of Hashin failure criterion, Cohesive Zone Model (CZM) and Bilinear traction-separation law. Among the five different specimens in the study, the highest PCF value was Trapeozidal with axial corrugated core while the lowest was Arc shaped with circular core. Axial arc shaped core was the sandwich structure with the highest SEA value, while circular sinusoidal corrugated core was the sandwich structure with the lowest SEA value. Between axial core and circular core, the CFE value of the sinusoidal core specimen was determined to be the highest. It was observed that the effect of core structure on the deformation behavior of sandwich structures was high.

Ethical Statement

There is no need to obtain ethics committee permission for the article prepared. There is no conflict of interest with any person/institution in the prepared article.

References

  • B. Kiyak, and M. O. Kaman, "Mechanical properties of new-manufactured sandwich composite having carbon fiber core," J. Compos. Mater., vol. 53, no. 22, pp. 3093-3109, 2019.
  • M. O. Kaman, M. Y. Solmaz, and K. Turan, "Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels," J. Compos. Mater., vol. 44, no. 24, pp. 2819-2831, 2010.
  • M. Albayrak, M. O. Kaman, and I. Bozkurt, "Experimental and Numerical Investigation of the Geometrical Effect on Low Velocity Impact Behavior for Curved Composites with a Rubber Interlayer," Appl. Compos. Mater., vol. 30, no. 2, pp. 507-538, 2023.
  • M. Albayrak, M. O. Kaman, and I. Bozkurt, "The effect of lamina configuration on low-velocity impact behaviour for glass fiber/rubber curved composites," J. Compos. Mater., vol. 57, no. 11, pp. 1875-1908.
  • Q. Zheng, D. Jiang, C. Huang, X. Shang, and S. Ju, "Analysis of failure loads and optimal design of composite lattice cylinder under axial compression," Compos. Struct., vol. 131, pp. 885-894, Nov. 2015.
  • S. Hou, S. Zhao, L. Ren, X. Han, and Q. Li, "Crashworthiness optimization of corrugated sandwich panels," Mater. Des., vol. 51, pp. 1071-1084, 2013.
  • Y. Hu, W. Li, X. An, and H. Fan, "Fabrication and mechanical behaviors of corrugated lattice truss composite sandwich panels," Compos. Sci. Technol., vol. 125, pp. 114-122, 2016.
  • W. He, J. Liu, S. Wang, and D. Xie, "Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores," Compos. Struct., vol. 189, pp. 37-53, Apr. 2018.
  • J. Liu, W. He, D. Xie, and B. Tao, "The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures," Compos. B Eng., vol. 111, pp. 315-331, 2017.
  • J. Xiong, R. Ghosh, L. Ma, A. Vaziri, Y. Wang, and L. Wu, "Sandwich-walled cylindrical shells with lightweight metallic lattice truss cores and carbon fiber-reinforced composite face sheets," Compos. Part A Appl. Sci. Manuf., vol. 56, pp. 226-238, Jan. 2014.
  • T. Zhao et al., "An experimental investigation on low-velocity impact response of a novel corrugated sandwiched composite structure," Compos. Struct., vol. 252, no. June, p. 112676, 2020.
  • V. Crupi, E. Kara, G. Epasto, E. Guglielmino, and H. Aykul, "Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches," Int. J. Impact Eng., vol. 77, pp. 97-107, 2015.
  • R. Mohmmed, F. Zhang, B. Sun, and B. Gu, "Finite element analyses of low-velocity impact failure of foam sandwiched composites with different ply angles face sheets," Mater. Des., vol. 47, pp. 189-199, 2013.
  • P. B. Su et al., "Axial compressive collapse of ultralight corrugated sandwich cylindrical shells," Mater. Des., vol. 160, pp. 325-337, Dec. 2018.
  • J. Xiong, A. Vaziri, R. Ghosh, H. Hu, L. Ma, and L. Wu, "Compression behavior and energy absorption of carbon fiber reinforced composite sandwich panels made of three-dimensional honeycomb grid cores," Extreme Mech. Lett., vol. 7, pp. 114-120, 2016.
  • L. Yan, P. Su, Y. Han, and B. Han, "Effects of Aluminum Foam Filling on Compressive Strength and Energy Absorption of Metallic Y-Shape Cored Sandwich Panel," Metals, vol. 10, no. 12, p. 1670.
  • H. Fan, L. Yang, F. Sun, and D. Fang, "Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites," Compos. Part A Appl. Sci. Manuf., vol. 52, pp. 118-125, 2013.
  • Z. Jia Zhang et al., "Mechanical behaviors and failure modes of sandwich cylinders with square honeycomb cores under axial compression," Thin-Walled Struct., vol. 172, p. 108868, Mar. 2022.
  • Q. Wu et al., "Failure of carbon fiber composite sandwich cylinders with a lattice core under axial compressive loading," Compos. Part A Appl. Sci. Manuf., vol. 155, p. 106812, Apr. 2022.
  • L. Ge, H. Zheng, H. Li, B. Liu, H. Su, and D. Fang, "Compression behavior of a novel sandwich structure with bi-directional corrugated core," Thin-Walled Struct., vol. 161, p. 107413.
  • X. Zhu et al., "Experimental study and modeling analysis of planar compression of composite corrugated, lattice and honeycomb sandwich plates," Compos. Struct., vol. 308, p. 116690, Mar. 2023.
  • X. Zhu et al., "Compression responses of composite corrugated sandwich square tube: Experimental and numerical investigation," Thin-Walled Struct., vol. 169, p. 108440, Dec. 2021.
  • L. Chen et al., "Compressive response of multi-layered thermoplastic composite corrugated sandwich panels: Modelling and experiments," Compos. B Eng., vol. 189, p. 107899, May 2020.
  • B. Han, K. Qin, B. Yu, B. Wang, Q. Zhang, and T. J. Lu, "Honeycomb–corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance," Mater. Des., vol. 93, pp. 271-282, Mar. 2016.
  • H. JO., LS-DYNA Keyword User’s Manual Volume II Material Models, Version 971. Livermore Software Technology Corporation, 2017.
  • S. Murakami, Continuum failure mechanics: a continuum mechanics approach to the analysis of failure and fracture.
  • I. Bozkurt, M. O. Kaman, and M. Albayrak, "Low-velocity impact behaviours of sandwiches manufactured from fully carbon fiber composite for different cell types and compression behaviours for different core types," Mater. Prüfung/Materials Testing, vol. 65, no. 9, pp. 1349-1372, 2023.
  • P. Feraboli, B. Wade, F. Deleo, M. Rassaian, M. Higgins, and A. Byar, "LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen," Compos. Part A Appl. Sci. Manuf., vol. 42, no. 11, pp. 1809-1825, Nov. 2011.
  • F. Dogan, H. Hadavinia, T. Donchev, and P. S. Bhonge, "Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact," Cent. Eur. J. Eng., vol. 2, no. 4, pp. 612-626, 2012.
  • I. Bozkurt, M. O. Kaman, and M. Albayrak, "Experimental and numerical impact behavior of fully carbon fiber sandwiches for different core types," J. Braz. Soc. Mech. Sci. Eng., vol. 46, no. 5, p. 318, May 2024.
  • W. Liu, S. Wang, J. Bu, and X. Ding, "An analytical model for the progressive failure prediction of reinforced thermoplastic pipes under axial compression," Polym. Compos., vol. 42, no. 6, pp. 3011-3024, Jun. 2021.
  • H. Zhu, P. Wang, D. Wei, J. Si, and Y. Wu, "Energy absorption of diamond lattice cylindrical shells under axial compression loading," Thin-Walled Struct., vol. 181, p. 110131, Dec. 2022.
  • I. Bozkurt, "Effect of geometric configurations and curvature angle of corrugated sandwich structures on impact behavior," Polym. Compos., pp. 1-24, 2024.
  • E. Demirci and A. R. Yıldız, "An experimental and numerical investigation of the effects of geometry and spot welds on the crashworthiness of vehicle thin-walled structures," vol. 60, no. 6, pp. 553-561, 2018.
  • İ. Bozkurt, "Numerical Investigation of the Effects of Impactor Geometry on Impact Behavior of Sandwich Structures," Bitlis Eren Univ. J. Sci. Tech., Sep. 2024.
  • F. Taheri-Behrooz, R. A. Esmaeel, and F. Taheri, "Response of perforated composite tubes subjected to axial compressive loading," Thin-Walled Struct., vol. 50, no. 1, pp. 174-181, Jan. 2012.

Farklı Geometrik Konfigürasyonlara Sahip Silindir Oluklu Sandviç Yapıların Basma Mukavemetlerinin ve Enerji Emiliminin İncelenmesi

Year 2025, Volume: 4 Issue: 1, 115 - 135, 18.02.2025
https://doi.org/10.62520/fujece.1516879

Abstract

Bu çalışmanın amacı beş farklı geometrik konfigürasyona sahip CFRP kompozit silindir sandviç yapıların basma mukavemetlerini ve enerji absorbelerini sayısal olarak incelemek ve birbirleri ile mukayese etmektir. Çalışmada farklı çekirdek yapıları için kompozit sandviçlerin ezilme performansları (Maksimum ezilme kuvveti (PCF), ortalama ezilme kuvveti (MCF), Ezilme kuvveti verimliliği (CFE), enerji emilimi (EA) ve spesifik enerji emilimi (SEA)) ve meydana gelen hasar türleri belirlenmiş. Basma analizleri LS DYNA sonlu elemanlar programında MAT-54 malzeme modeli kullanılarak Hashin hasar kriteri, Kohezif Bölge Modeli (CZM) ve Bilinear traction-separation yasasının kombinasyonuna dayalı ilerlemeli hasar analizi ile gerçekleştirilmiştir. Çalışmada beş farklı numune arasında PCF değeri en yüksek eksenel oluklu çekirdek yapılı Trapeozidal olurken en düşük ise dairesel oluklu çekirdek yapılı Arc shaped olmuştur. Eksenel arc shaped SEA değeri en yüksek sandviç yapı olurken, dairesel sinusoidal oluklu çekirdek ise SEA değeri en düşük sandviç yapı olmuştur. Eksenel ve dairesel oluklu çekirdek arasında sinusoidal yapının CFE değeri en yüksek olarak belirlenmiştir. Sandviç yapıların deformasyon davranışlarına çekirdek yapısının etkisinin yüksek olduğu görülmüştür.

References

  • B. Kiyak, and M. O. Kaman, "Mechanical properties of new-manufactured sandwich composite having carbon fiber core," J. Compos. Mater., vol. 53, no. 22, pp. 3093-3109, 2019.
  • M. O. Kaman, M. Y. Solmaz, and K. Turan, "Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels," J. Compos. Mater., vol. 44, no. 24, pp. 2819-2831, 2010.
  • M. Albayrak, M. O. Kaman, and I. Bozkurt, "Experimental and Numerical Investigation of the Geometrical Effect on Low Velocity Impact Behavior for Curved Composites with a Rubber Interlayer," Appl. Compos. Mater., vol. 30, no. 2, pp. 507-538, 2023.
  • M. Albayrak, M. O. Kaman, and I. Bozkurt, "The effect of lamina configuration on low-velocity impact behaviour for glass fiber/rubber curved composites," J. Compos. Mater., vol. 57, no. 11, pp. 1875-1908.
  • Q. Zheng, D. Jiang, C. Huang, X. Shang, and S. Ju, "Analysis of failure loads and optimal design of composite lattice cylinder under axial compression," Compos. Struct., vol. 131, pp. 885-894, Nov. 2015.
  • S. Hou, S. Zhao, L. Ren, X. Han, and Q. Li, "Crashworthiness optimization of corrugated sandwich panels," Mater. Des., vol. 51, pp. 1071-1084, 2013.
  • Y. Hu, W. Li, X. An, and H. Fan, "Fabrication and mechanical behaviors of corrugated lattice truss composite sandwich panels," Compos. Sci. Technol., vol. 125, pp. 114-122, 2016.
  • W. He, J. Liu, S. Wang, and D. Xie, "Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores," Compos. Struct., vol. 189, pp. 37-53, Apr. 2018.
  • J. Liu, W. He, D. Xie, and B. Tao, "The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures," Compos. B Eng., vol. 111, pp. 315-331, 2017.
  • J. Xiong, R. Ghosh, L. Ma, A. Vaziri, Y. Wang, and L. Wu, "Sandwich-walled cylindrical shells with lightweight metallic lattice truss cores and carbon fiber-reinforced composite face sheets," Compos. Part A Appl. Sci. Manuf., vol. 56, pp. 226-238, Jan. 2014.
  • T. Zhao et al., "An experimental investigation on low-velocity impact response of a novel corrugated sandwiched composite structure," Compos. Struct., vol. 252, no. June, p. 112676, 2020.
  • V. Crupi, E. Kara, G. Epasto, E. Guglielmino, and H. Aykul, "Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches," Int. J. Impact Eng., vol. 77, pp. 97-107, 2015.
  • R. Mohmmed, F. Zhang, B. Sun, and B. Gu, "Finite element analyses of low-velocity impact failure of foam sandwiched composites with different ply angles face sheets," Mater. Des., vol. 47, pp. 189-199, 2013.
  • P. B. Su et al., "Axial compressive collapse of ultralight corrugated sandwich cylindrical shells," Mater. Des., vol. 160, pp. 325-337, Dec. 2018.
  • J. Xiong, A. Vaziri, R. Ghosh, H. Hu, L. Ma, and L. Wu, "Compression behavior and energy absorption of carbon fiber reinforced composite sandwich panels made of three-dimensional honeycomb grid cores," Extreme Mech. Lett., vol. 7, pp. 114-120, 2016.
  • L. Yan, P. Su, Y. Han, and B. Han, "Effects of Aluminum Foam Filling on Compressive Strength and Energy Absorption of Metallic Y-Shape Cored Sandwich Panel," Metals, vol. 10, no. 12, p. 1670.
  • H. Fan, L. Yang, F. Sun, and D. Fang, "Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites," Compos. Part A Appl. Sci. Manuf., vol. 52, pp. 118-125, 2013.
  • Z. Jia Zhang et al., "Mechanical behaviors and failure modes of sandwich cylinders with square honeycomb cores under axial compression," Thin-Walled Struct., vol. 172, p. 108868, Mar. 2022.
  • Q. Wu et al., "Failure of carbon fiber composite sandwich cylinders with a lattice core under axial compressive loading," Compos. Part A Appl. Sci. Manuf., vol. 155, p. 106812, Apr. 2022.
  • L. Ge, H. Zheng, H. Li, B. Liu, H. Su, and D. Fang, "Compression behavior of a novel sandwich structure with bi-directional corrugated core," Thin-Walled Struct., vol. 161, p. 107413.
  • X. Zhu et al., "Experimental study and modeling analysis of planar compression of composite corrugated, lattice and honeycomb sandwich plates," Compos. Struct., vol. 308, p. 116690, Mar. 2023.
  • X. Zhu et al., "Compression responses of composite corrugated sandwich square tube: Experimental and numerical investigation," Thin-Walled Struct., vol. 169, p. 108440, Dec. 2021.
  • L. Chen et al., "Compressive response of multi-layered thermoplastic composite corrugated sandwich panels: Modelling and experiments," Compos. B Eng., vol. 189, p. 107899, May 2020.
  • B. Han, K. Qin, B. Yu, B. Wang, Q. Zhang, and T. J. Lu, "Honeycomb–corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance," Mater. Des., vol. 93, pp. 271-282, Mar. 2016.
  • H. JO., LS-DYNA Keyword User’s Manual Volume II Material Models, Version 971. Livermore Software Technology Corporation, 2017.
  • S. Murakami, Continuum failure mechanics: a continuum mechanics approach to the analysis of failure and fracture.
  • I. Bozkurt, M. O. Kaman, and M. Albayrak, "Low-velocity impact behaviours of sandwiches manufactured from fully carbon fiber composite for different cell types and compression behaviours for different core types," Mater. Prüfung/Materials Testing, vol. 65, no. 9, pp. 1349-1372, 2023.
  • P. Feraboli, B. Wade, F. Deleo, M. Rassaian, M. Higgins, and A. Byar, "LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen," Compos. Part A Appl. Sci. Manuf., vol. 42, no. 11, pp. 1809-1825, Nov. 2011.
  • F. Dogan, H. Hadavinia, T. Donchev, and P. S. Bhonge, "Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact," Cent. Eur. J. Eng., vol. 2, no. 4, pp. 612-626, 2012.
  • I. Bozkurt, M. O. Kaman, and M. Albayrak, "Experimental and numerical impact behavior of fully carbon fiber sandwiches for different core types," J. Braz. Soc. Mech. Sci. Eng., vol. 46, no. 5, p. 318, May 2024.
  • W. Liu, S. Wang, J. Bu, and X. Ding, "An analytical model for the progressive failure prediction of reinforced thermoplastic pipes under axial compression," Polym. Compos., vol. 42, no. 6, pp. 3011-3024, Jun. 2021.
  • H. Zhu, P. Wang, D. Wei, J. Si, and Y. Wu, "Energy absorption of diamond lattice cylindrical shells under axial compression loading," Thin-Walled Struct., vol. 181, p. 110131, Dec. 2022.
  • I. Bozkurt, "Effect of geometric configurations and curvature angle of corrugated sandwich structures on impact behavior," Polym. Compos., pp. 1-24, 2024.
  • E. Demirci and A. R. Yıldız, "An experimental and numerical investigation of the effects of geometry and spot welds on the crashworthiness of vehicle thin-walled structures," vol. 60, no. 6, pp. 553-561, 2018.
  • İ. Bozkurt, "Numerical Investigation of the Effects of Impactor Geometry on Impact Behavior of Sandwich Structures," Bitlis Eren Univ. J. Sci. Tech., Sep. 2024.
  • F. Taheri-Behrooz, R. A. Esmaeel, and F. Taheri, "Response of perforated composite tubes subjected to axial compressive loading," Thin-Walled Struct., vol. 50, no. 1, pp. 174-181, Jan. 2012.
There are 36 citations in total.

Details

Primary Language English
Subjects Solid Mechanics, Numerical Methods in Mechanical Engineering, Numerical Modelling and Mechanical Characterisation, Composite and Hybrid Materials
Journal Section Research Articles
Authors

İlyas Bozkurt 0000-0001-7850-2308

Publication Date February 18, 2025
Submission Date July 16, 2024
Acceptance Date September 30, 2024
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Bozkurt, İ. (2025). Investigation of Compressive Strength and Energy Absorption of Cylinder Corrugated Sandwich Structures with Different Geometric Configurations. Firat University Journal of Experimental and Computational Engineering, 4(1), 115-135. https://doi.org/10.62520/fujece.1516879
AMA Bozkurt İ. Investigation of Compressive Strength and Energy Absorption of Cylinder Corrugated Sandwich Structures with Different Geometric Configurations. FUJECE. February 2025;4(1):115-135. doi:10.62520/fujece.1516879
Chicago Bozkurt, İlyas. “Investigation of Compressive Strength and Energy Absorption of Cylinder Corrugated Sandwich Structures With Different Geometric Configurations”. Firat University Journal of Experimental and Computational Engineering 4, no. 1 (February 2025): 115-35. https://doi.org/10.62520/fujece.1516879.
EndNote Bozkurt İ (February 1, 2025) Investigation of Compressive Strength and Energy Absorption of Cylinder Corrugated Sandwich Structures with Different Geometric Configurations. Firat University Journal of Experimental and Computational Engineering 4 1 115–135.
IEEE İ. Bozkurt, “Investigation of Compressive Strength and Energy Absorption of Cylinder Corrugated Sandwich Structures with Different Geometric Configurations”, FUJECE, vol. 4, no. 1, pp. 115–135, 2025, doi: 10.62520/fujece.1516879.
ISNAD Bozkurt, İlyas. “Investigation of Compressive Strength and Energy Absorption of Cylinder Corrugated Sandwich Structures With Different Geometric Configurations”. Firat University Journal of Experimental and Computational Engineering 4/1 (February 2025), 115-135. https://doi.org/10.62520/fujece.1516879.
JAMA Bozkurt İ. Investigation of Compressive Strength and Energy Absorption of Cylinder Corrugated Sandwich Structures with Different Geometric Configurations. FUJECE. 2025;4:115–135.
MLA Bozkurt, İlyas. “Investigation of Compressive Strength and Energy Absorption of Cylinder Corrugated Sandwich Structures With Different Geometric Configurations”. Firat University Journal of Experimental and Computational Engineering, vol. 4, no. 1, 2025, pp. 115-3, doi:10.62520/fujece.1516879.
Vancouver Bozkurt İ. Investigation of Compressive Strength and Energy Absorption of Cylinder Corrugated Sandwich Structures with Different Geometric Configurations. FUJECE. 2025;4(1):115-3.