Research Article
BibTex RIS Cite

A New Aspect for Some Sequence Spaces Derived Using the Domain of the Matrix $\widehat{\widehat{B}}$

Year 2022, , 51 - 62, 01.03.2022
https://doi.org/10.33401/fujma.1003752

Abstract

This study serves for analysing algebraic and topological characteristics of the sequence spaces $X(\widehat{\widehat{B}}(r,s))$ constituted by using non-zero real number $r$ and $s$, where $X$ denotes arbitrary of the classical sequence spaces $\ell_{\infty}, c, c_{0} $ and $\ell_{p}$ $(1<p<\infty)$ of bounded, convergent, null and absolutely $p$-summable sequences, respectively and $X(\widehat{\widehat{B}})$ also is the domain of the matrix $\widehat{\widehat{B}}(r,s)$ in the sequence space $X$. Briefly, the $\beta$- and $\gamma$-duals of the space $X(\widehat{\widehat{B}})$ are computed, and Schauder bases for the spaces $c(\widehat{\widehat{B}})$, $c_{0}(\widehat{\widehat{B}})$ and $\ell_{p}(\widehat{\widehat{B}})$ are determined, and some algebraic and topological properties of the spaces $c_{0}(\widehat{\widehat{B}})$, $\ell_{1}(\widehat{\widehat{B}})$ and $\ell_{p}(\widehat{\widehat{B}})$ are studied. Additionally, it is observed that all these spaces have some remarkable features, including the classes $(X_{1}(\widehat{\widehat{B}})$: $X_{2})$ and $(X_{1}(\widehat{\widehat{B}})
: X_{2}(\widehat{\widehat{B}}))$ of infinite matrices which are characterized, in which $X_{1}\in\{ \ell_{\infty},c,c_{0},\ell_{p},\ell_{1}\}$ and $X_{2}\in\{\ell_{\infty},c,c_{0},\ell_{1}\}$.

References

  • [1] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, İstanbul, 2012, ISBN: 978-1-60805-252-3.
  • [2] F. Başar & H. Dutta, Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties, CRC Press, Taylor & Francis Group, Monographs and Research Notes in Mathematics, Boca Raton · London · New York, 2020. ISBN: 978-0-8153-5177-1.
  • [3] M. Mursaleen, F. Başar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor & Francis Group, Series: Mathematics and Its Applications, Boca Raton · London · New York, 2020.
  • [4] M. Mursaleen, Applied Summability Methods, Springer Briefs, 2014.
  • [5] B. de Malafosse, E.Malkowsky, and V. Rakocevic, Operators Between Sequence Spaces and Applications, Springer Nature Singapore, 152 Beach Road, Singapore 18972, Singapore.
  • [6] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
  • [7] M. Et, On some difference sequence spaces, Turk. J. Math. 17 (1993), 18-24.
  • [8] M. A. Sarıgöl, On difference sequence spaces, J. Karadeniz Tech. Uni. Fac. Arts Sci. Ser. Math.-Phys., 10 (1987), 63-71.
  • [9] Z. U. Ahmad, M. Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd) 42 (1987), 57-61.
  • [10] E. Malkowsky, Absolute and ordinary Köthe-Toeplitz duals of some sets of sequences and matrix transformations, Publ. Inst. Math., (Beograd)(NS), 46(60) (1989), 97-103.
  • [11] B. Choudhary, S. K. Mishra, A note on certain sequence spaces, J. Anal., 1 (1993), 139-148.
  • [12] S. K. Mishra, Matrix maps involving certain sequence spaces, Indian J. Pure Appl. Math., 24(2) (1993), 125-132.
  • [13] M. Mursaleen, A. K. Gaur, A. H. Saifi,Some new sequence spaces and their duals and matrix transformations, Bull. Calcutta Math. Soc., 88(3) (1996), 207-212.
  • [14] C. Gnanaseelan, P. D. Srivastava, The a􀀀, b􀀀 and g􀀀duals of some generalised difference sequence spaces, Indian J. Math., 38(2) (1996), 111-120.
  • [15] E. Malkowsky, A note on the Köthe-Toeplitz duals of generalized sets of bounded and convergent difference sequences, J. Anal., 4 (1996), 981-91.
  • [16] A. K. Gaur, M. Mursaleen, Difference sequence spaces, Int. J. Math. Math. Sci., 21(4) (1998), 701-706.
  • [17] E. Malkowsky, M. Mursaleen, Qamaruddin, Generalized sets of difference sequences, their duals and matrix transformations, In: Sequence Spaces and App. Narosa, New Delhi, 1999, pp. 68-83.
  • [18] Ç . Asma, R. Ç olak, On the Köthe-Toeplitz duals of some generalized sets of difference sequences, Demonstratio Math., 33 (2000), 797-803.
  • [19] E. Malkowsky, M. Mursaleen, Some matrix transformations between the difference sequence spaces Dc0(p), Dc(p) and D`¥(p), Filomat, 15 (2001), 353-363.
  • [20] M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60(5) (2010), 1299-1309.
  • [21] A. Sönmez, A. Some new sequence spaces derived by the domain of the triple band matrix, Comput. Math. Appl., 62(2) (2011), 641-650.
  • [22] M. Candan, Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., 281(1) (2012), 1-15.
  • [23] M. Candan, Almost convergence and double sequential band matrix, Acta Math. Sci. Ser. B, 34(2) (2014) 354-366.
  • [24] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Differ. Equ., 163(1) (2014), 1-18.
  • [25] M. Stieglitz, H. Tietz, Matrix transformationen von folgenr¨aumen eine ergebnis¨ubersicht, Math. Z., 154 (1977), 1-16.
  • [26] K.-G. Grosse-Erdmann, On `1-invariant sequence spaces, J. Math. Anal. Appl., 262 (2001), 112-132.
  • [27] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336(1) (2007), 632-645.
  • [28] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1) (2003), 136-147.
  • [29] F. Yaşar, K. Kayaduman, A different study on the spaces of generalized Fibonacci difference bs and cs spaces sequence, Symmetry, 10 (2018), 274, doi:10.3390/sym10070274.
  • [30] K. Kayaduman, F. Yaşar, On domain of Nörlund matrix Mathematics, 6 (2018), 268, doi:10.3390/math6110268.
  • [31] F. Yaşar, K. Kayaduman, On the domain of the Fibonacci difference matrix, Mathematics, 7 (2019), 204, doi:10.3390/math7020204.
  • [32] K. Kayaduman, F. Yaşar, A. Çetin, On some inequalities and sB(r;s)-conservative matrices, J. Inequal. Speci. Func., 9(2) (2018), 82-91.
  • [33] M. Candan, K. Kayaduman, Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core, British J. Math. \& Computer Sci., 7 (2015), 150-167.
  • [34] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
  • [35] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 38 (2013), https://doi.org/10.1186/1029-242X-2013-38.
  • [36] E. E. Kara, M. İlkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilinear Algebra, 64(11) (2016), 2208–2223, 1145626.
  • [37] M. Kirişçi, The application domain of infinite matrices with algorithms, Uni. J. Math. Appl., 1(1) (2018), 1-9.
  • [38] F. Başar, M. Kirişçi, Almost convergence and generalized difference matrix, Comput. Math. Appl., 61(3) (2011), 602-611.
Year 2022, , 51 - 62, 01.03.2022
https://doi.org/10.33401/fujma.1003752

Abstract

References

  • [1] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, İstanbul, 2012, ISBN: 978-1-60805-252-3.
  • [2] F. Başar & H. Dutta, Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties, CRC Press, Taylor & Francis Group, Monographs and Research Notes in Mathematics, Boca Raton · London · New York, 2020. ISBN: 978-0-8153-5177-1.
  • [3] M. Mursaleen, F. Başar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor & Francis Group, Series: Mathematics and Its Applications, Boca Raton · London · New York, 2020.
  • [4] M. Mursaleen, Applied Summability Methods, Springer Briefs, 2014.
  • [5] B. de Malafosse, E.Malkowsky, and V. Rakocevic, Operators Between Sequence Spaces and Applications, Springer Nature Singapore, 152 Beach Road, Singapore 18972, Singapore.
  • [6] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
  • [7] M. Et, On some difference sequence spaces, Turk. J. Math. 17 (1993), 18-24.
  • [8] M. A. Sarıgöl, On difference sequence spaces, J. Karadeniz Tech. Uni. Fac. Arts Sci. Ser. Math.-Phys., 10 (1987), 63-71.
  • [9] Z. U. Ahmad, M. Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd) 42 (1987), 57-61.
  • [10] E. Malkowsky, Absolute and ordinary Köthe-Toeplitz duals of some sets of sequences and matrix transformations, Publ. Inst. Math., (Beograd)(NS), 46(60) (1989), 97-103.
  • [11] B. Choudhary, S. K. Mishra, A note on certain sequence spaces, J. Anal., 1 (1993), 139-148.
  • [12] S. K. Mishra, Matrix maps involving certain sequence spaces, Indian J. Pure Appl. Math., 24(2) (1993), 125-132.
  • [13] M. Mursaleen, A. K. Gaur, A. H. Saifi,Some new sequence spaces and their duals and matrix transformations, Bull. Calcutta Math. Soc., 88(3) (1996), 207-212.
  • [14] C. Gnanaseelan, P. D. Srivastava, The a􀀀, b􀀀 and g􀀀duals of some generalised difference sequence spaces, Indian J. Math., 38(2) (1996), 111-120.
  • [15] E. Malkowsky, A note on the Köthe-Toeplitz duals of generalized sets of bounded and convergent difference sequences, J. Anal., 4 (1996), 981-91.
  • [16] A. K. Gaur, M. Mursaleen, Difference sequence spaces, Int. J. Math. Math. Sci., 21(4) (1998), 701-706.
  • [17] E. Malkowsky, M. Mursaleen, Qamaruddin, Generalized sets of difference sequences, their duals and matrix transformations, In: Sequence Spaces and App. Narosa, New Delhi, 1999, pp. 68-83.
  • [18] Ç . Asma, R. Ç olak, On the Köthe-Toeplitz duals of some generalized sets of difference sequences, Demonstratio Math., 33 (2000), 797-803.
  • [19] E. Malkowsky, M. Mursaleen, Some matrix transformations between the difference sequence spaces Dc0(p), Dc(p) and D`¥(p), Filomat, 15 (2001), 353-363.
  • [20] M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60(5) (2010), 1299-1309.
  • [21] A. Sönmez, A. Some new sequence spaces derived by the domain of the triple band matrix, Comput. Math. Appl., 62(2) (2011), 641-650.
  • [22] M. Candan, Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., 281(1) (2012), 1-15.
  • [23] M. Candan, Almost convergence and double sequential band matrix, Acta Math. Sci. Ser. B, 34(2) (2014) 354-366.
  • [24] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Differ. Equ., 163(1) (2014), 1-18.
  • [25] M. Stieglitz, H. Tietz, Matrix transformationen von folgenr¨aumen eine ergebnis¨ubersicht, Math. Z., 154 (1977), 1-16.
  • [26] K.-G. Grosse-Erdmann, On `1-invariant sequence spaces, J. Math. Anal. Appl., 262 (2001), 112-132.
  • [27] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336(1) (2007), 632-645.
  • [28] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1) (2003), 136-147.
  • [29] F. Yaşar, K. Kayaduman, A different study on the spaces of generalized Fibonacci difference bs and cs spaces sequence, Symmetry, 10 (2018), 274, doi:10.3390/sym10070274.
  • [30] K. Kayaduman, F. Yaşar, On domain of Nörlund matrix Mathematics, 6 (2018), 268, doi:10.3390/math6110268.
  • [31] F. Yaşar, K. Kayaduman, On the domain of the Fibonacci difference matrix, Mathematics, 7 (2019), 204, doi:10.3390/math7020204.
  • [32] K. Kayaduman, F. Yaşar, A. Çetin, On some inequalities and sB(r;s)-conservative matrices, J. Inequal. Speci. Func., 9(2) (2018), 82-91.
  • [33] M. Candan, K. Kayaduman, Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core, British J. Math. \& Computer Sci., 7 (2015), 150-167.
  • [34] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
  • [35] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 38 (2013), https://doi.org/10.1186/1029-242X-2013-38.
  • [36] E. E. Kara, M. İlkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilinear Algebra, 64(11) (2016), 2208–2223, 1145626.
  • [37] M. Kirişçi, The application domain of infinite matrices with algorithms, Uni. J. Math. Appl., 1(1) (2018), 1-9.
  • [38] F. Başar, M. Kirişçi, Almost convergence and generalized difference matrix, Comput. Math. Appl., 61(3) (2011), 602-611.
There are 38 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Murat Candan 0000-0002-1941-7442

Publication Date March 1, 2022
Submission Date October 2, 2021
Acceptance Date February 11, 2022
Published in Issue Year 2022

Cite

APA Candan, M. (2022). A New Aspect for Some Sequence Spaces Derived Using the Domain of the Matrix $\widehat{\widehat{B}}$. Fundamental Journal of Mathematics and Applications, 5(1), 51-62. https://doi.org/10.33401/fujma.1003752
AMA Candan M. A New Aspect for Some Sequence Spaces Derived Using the Domain of the Matrix $\widehat{\widehat{B}}$. Fundam. J. Math. Appl. March 2022;5(1):51-62. doi:10.33401/fujma.1003752
Chicago Candan, Murat. “A New Aspect for Some Sequence Spaces Derived Using the Domain of the Matrix $\widehat{\widehat{B}}$”. Fundamental Journal of Mathematics and Applications 5, no. 1 (March 2022): 51-62. https://doi.org/10.33401/fujma.1003752.
EndNote Candan M (March 1, 2022) A New Aspect for Some Sequence Spaces Derived Using the Domain of the Matrix $\widehat{\widehat{B}}$. Fundamental Journal of Mathematics and Applications 5 1 51–62.
IEEE M. Candan, “A New Aspect for Some Sequence Spaces Derived Using the Domain of the Matrix $\widehat{\widehat{B}}$”, Fundam. J. Math. Appl., vol. 5, no. 1, pp. 51–62, 2022, doi: 10.33401/fujma.1003752.
ISNAD Candan, Murat. “A New Aspect for Some Sequence Spaces Derived Using the Domain of the Matrix $\widehat{\widehat{B}}$”. Fundamental Journal of Mathematics and Applications 5/1 (March 2022), 51-62. https://doi.org/10.33401/fujma.1003752.
JAMA Candan M. A New Aspect for Some Sequence Spaces Derived Using the Domain of the Matrix $\widehat{\widehat{B}}$. Fundam. J. Math. Appl. 2022;5:51–62.
MLA Candan, Murat. “A New Aspect for Some Sequence Spaces Derived Using the Domain of the Matrix $\widehat{\widehat{B}}$”. Fundamental Journal of Mathematics and Applications, vol. 5, no. 1, 2022, pp. 51-62, doi:10.33401/fujma.1003752.
Vancouver Candan M. A New Aspect for Some Sequence Spaces Derived Using the Domain of the Matrix $\widehat{\widehat{B}}$. Fundam. J. Math. Appl. 2022;5(1):51-62.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a