Research Article
BibTex RIS Cite
Year 2022, , 106 - 113, 01.06.2022
https://doi.org/10.33401/fujma.1020437

Abstract

References

  • [1] K. H. Chang, Product Design Modeling using CAD/CAE, The computer aided engineering design series, Academic Press, 2014.
  • [2] R. Goldman, An Integrated Introduction to Computer Graphics and Geometric Modeling, CRC Press, 2009.
  • [3] S. Guha, Computer Graphics Through OpenGL: From Theory to Experiments, Chapman and Hall/CRC, 2018.
  • [4] P. Helmut, A. Andreas, H. Michael, K. Axel, Architectural Geometry, Bentley Institute Press, 2007.
  • [5] H. K. Joo, T. Yazaki, M. Takezawa, T. Maekawa, Differential geometry properties of lines of curvature of parametric surfaces and their visualization, Graph. Models, 76 (2014), 224–238.
  • [6] X. P. Zhang, W. J. Che, J. C. Paul, Computing lines of curvature for implicit surfaces, Comput. Aid. Geom. Des., 26(9)(2009), 923–940.
  • [7] I. Hotz, H. Hagen, Visualizing geodesics, In Proceedings Visualization 2000, VIS 2000 (Cat. No. 00CH37145), IEEE, 311-318.
  • [8] Y. L. Yang, J. Kim, F. Luo, S. M. Hu, X. Gu, Optimal surface parameterization using inverse curvature map, IEEE Transactions on Visualization and Computer Graphics, 14(5)(2008), 1054-1066.
  • [9] A. Sheffer, E. Praun, K. Rose, Mesh parameterization methods and their applications, Foundations and Trends in Computer Graphics and Vision, 2(2)(2006), 105–171.
  • [10] K. Hormann, B. Levy, A. Sheffer, Mesh Parameterization: Theory and Practice, 2007.
  • [11] M. Desbrun, P. Alliez, U. S. C. Inria, M. Meyer, P. Alliez, Intrinsic parameterizations of surface meshes, Comput. Graph. Forum, 21(3)(2002), 209–218.
  • [12] M. S. Floater, K. Hormann, Surface Parameterization: A Tutorial and Survey, In Advances in multiresolution for geometric modelling, Springer, 2005, 157–186.
  • [13] B. H. Jafari, N. Gans, Surface parameterization and trajectory generation on regular surfaces with application in robot-guided deposition printing, IEEE Robotics and Automation Letters, 5(4)(2020), 6113-6120.
  • [14] R. R. Martin, Principal Patches-A new class of surface patch based on differential geometry, Eurographics Proceedings, (1983).
  • [15] L. Garnier, L. Druoton, Constructions of principal patches of Dupin cyclides defined by constraints: four vertices on a given circle and two perpendicular tangents at a vertex, XIV Mathematics of Surfaces (Birmingham, Royaume-Uni, 11-13 September 2013), pp.237-276.
  • [16] M.Takezawa, T. Imai, K. Shida, T. Maekawa, Fabrication of freeform objects by principal strips, ACM T. Graphic., 35(6)(2016), 1-12.
  • [17] N. G¨urb¨uz, The motion of timelike surfaces in timelike geodesic coordinates, Int. J. Math. Anal, 4(2010), 349-356.
  • [18] Y. Li, C. Chen, The motion of surfaces in geodesic coordinates and 2+ 1-dimensional breaking soliton equation, J. Math. Phys., 41(4)(2000), 2066-2076.
  • [19] E. Adiels, M. Ander, C. Williams, Brick patterns on shells using geodesic coordinates, In Proceedings of IASS Annual Symposia, Hamburg, Germany, September 25-28, 23(2017), 1-10.
  • [20] X. Tellier, C. Douthe, L. Hauswirth, O. Baverel, Surfaces with planar curvature lines: Discretization, generation and application to the rationalization of curved architectural envelopes, Automation in Construction, 106(2019), 102880.
  • [21] S. Pillwein, K. Leimer, M. Birsak, P. Musialski, On elastic geodesic grids and their planar to spatial deployment, 2020, arXiv preprint arXiv:2007.00201.
  • [22] H. Wang, D. Pellis, F. Rist, H. Pottmann, C. M¨uller, Discrete geodesic parallel coordinates, ACM T. Graphic., 38(6)(2019), 1-13.
  • [23] M. Rabinovich, T. Hoffmann, O. Sorkine-Hornung, Discrete geodesic nets for modeling developable surfaces, ACM T. Graphic., 37(2)(2018), 1-17.
  • [24] N. M. Althibany, Construction of developable surface with geodesic or line of curvature coordinates, J. New Theory, 36(2021),75-87.
  • [25] M. D. Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, New Jersey, 1976.
  • [26] D. J. Struik, Lectures on Classical Differential Geometry, 2nd Edition, Dover Publications Inc., New York, 1988.
  • [27] A. N. Pressley, Elementary Differential Geometry, Springer Science & Business Media, 2010.
  • [28] F. Dogan, Y. Yayli, The relation between parameter curves and lines of curvature on canal surfaces, Kuwait J. Sci., 44(1)(2017), 29-35.
  • [29] M. I. Shtogrin, Bending of a piecewise developable surface, Proceedings of the Steklov Institute of Mathematics, 275(2011), 133-154.
  • [30] A. Honda, K. Naokawa, K. Saji, M. Umehara, K. Yamada, Curved foldings with common creases and crease patterns, Adv. App. Math., 121(2020), 102083.
  • [31] S. Izumiya, H. Katsumi, T. Yamasaki, The rectifying developable and the spherical Darboux image of a space curve, Banach Center Publ., 50(1999), 137-149.
  • [32] G. H. Georgiev, C. L. Dinkova, Focal curves of geodesics on generalized cylinders, ARPN J. Engineering and Applied Sciences, 14(11)(2019), 2058-2068.

Generalized Cylinder with Geodesic and Line of Curvature Parameterizations

Year 2022, , 106 - 113, 01.06.2022
https://doi.org/10.33401/fujma.1020437

Abstract

Constructing a surface with geodesic or line of curvature parameterization is an important problem in many practical applications. The present paper aims to design a generalized cylinder that is parametrized along the geodesics and lines of curvature curves in Euclidean 3- space. The main results show that the generalized cylinder with geodesic or line of curvature parameterization is a rectifying cylinder or a right cylinder respectively.

References

  • [1] K. H. Chang, Product Design Modeling using CAD/CAE, The computer aided engineering design series, Academic Press, 2014.
  • [2] R. Goldman, An Integrated Introduction to Computer Graphics and Geometric Modeling, CRC Press, 2009.
  • [3] S. Guha, Computer Graphics Through OpenGL: From Theory to Experiments, Chapman and Hall/CRC, 2018.
  • [4] P. Helmut, A. Andreas, H. Michael, K. Axel, Architectural Geometry, Bentley Institute Press, 2007.
  • [5] H. K. Joo, T. Yazaki, M. Takezawa, T. Maekawa, Differential geometry properties of lines of curvature of parametric surfaces and their visualization, Graph. Models, 76 (2014), 224–238.
  • [6] X. P. Zhang, W. J. Che, J. C. Paul, Computing lines of curvature for implicit surfaces, Comput. Aid. Geom. Des., 26(9)(2009), 923–940.
  • [7] I. Hotz, H. Hagen, Visualizing geodesics, In Proceedings Visualization 2000, VIS 2000 (Cat. No. 00CH37145), IEEE, 311-318.
  • [8] Y. L. Yang, J. Kim, F. Luo, S. M. Hu, X. Gu, Optimal surface parameterization using inverse curvature map, IEEE Transactions on Visualization and Computer Graphics, 14(5)(2008), 1054-1066.
  • [9] A. Sheffer, E. Praun, K. Rose, Mesh parameterization methods and their applications, Foundations and Trends in Computer Graphics and Vision, 2(2)(2006), 105–171.
  • [10] K. Hormann, B. Levy, A. Sheffer, Mesh Parameterization: Theory and Practice, 2007.
  • [11] M. Desbrun, P. Alliez, U. S. C. Inria, M. Meyer, P. Alliez, Intrinsic parameterizations of surface meshes, Comput. Graph. Forum, 21(3)(2002), 209–218.
  • [12] M. S. Floater, K. Hormann, Surface Parameterization: A Tutorial and Survey, In Advances in multiresolution for geometric modelling, Springer, 2005, 157–186.
  • [13] B. H. Jafari, N. Gans, Surface parameterization and trajectory generation on regular surfaces with application in robot-guided deposition printing, IEEE Robotics and Automation Letters, 5(4)(2020), 6113-6120.
  • [14] R. R. Martin, Principal Patches-A new class of surface patch based on differential geometry, Eurographics Proceedings, (1983).
  • [15] L. Garnier, L. Druoton, Constructions of principal patches of Dupin cyclides defined by constraints: four vertices on a given circle and two perpendicular tangents at a vertex, XIV Mathematics of Surfaces (Birmingham, Royaume-Uni, 11-13 September 2013), pp.237-276.
  • [16] M.Takezawa, T. Imai, K. Shida, T. Maekawa, Fabrication of freeform objects by principal strips, ACM T. Graphic., 35(6)(2016), 1-12.
  • [17] N. G¨urb¨uz, The motion of timelike surfaces in timelike geodesic coordinates, Int. J. Math. Anal, 4(2010), 349-356.
  • [18] Y. Li, C. Chen, The motion of surfaces in geodesic coordinates and 2+ 1-dimensional breaking soliton equation, J. Math. Phys., 41(4)(2000), 2066-2076.
  • [19] E. Adiels, M. Ander, C. Williams, Brick patterns on shells using geodesic coordinates, In Proceedings of IASS Annual Symposia, Hamburg, Germany, September 25-28, 23(2017), 1-10.
  • [20] X. Tellier, C. Douthe, L. Hauswirth, O. Baverel, Surfaces with planar curvature lines: Discretization, generation and application to the rationalization of curved architectural envelopes, Automation in Construction, 106(2019), 102880.
  • [21] S. Pillwein, K. Leimer, M. Birsak, P. Musialski, On elastic geodesic grids and their planar to spatial deployment, 2020, arXiv preprint arXiv:2007.00201.
  • [22] H. Wang, D. Pellis, F. Rist, H. Pottmann, C. M¨uller, Discrete geodesic parallel coordinates, ACM T. Graphic., 38(6)(2019), 1-13.
  • [23] M. Rabinovich, T. Hoffmann, O. Sorkine-Hornung, Discrete geodesic nets for modeling developable surfaces, ACM T. Graphic., 37(2)(2018), 1-17.
  • [24] N. M. Althibany, Construction of developable surface with geodesic or line of curvature coordinates, J. New Theory, 36(2021),75-87.
  • [25] M. D. Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, New Jersey, 1976.
  • [26] D. J. Struik, Lectures on Classical Differential Geometry, 2nd Edition, Dover Publications Inc., New York, 1988.
  • [27] A. N. Pressley, Elementary Differential Geometry, Springer Science & Business Media, 2010.
  • [28] F. Dogan, Y. Yayli, The relation between parameter curves and lines of curvature on canal surfaces, Kuwait J. Sci., 44(1)(2017), 29-35.
  • [29] M. I. Shtogrin, Bending of a piecewise developable surface, Proceedings of the Steklov Institute of Mathematics, 275(2011), 133-154.
  • [30] A. Honda, K. Naokawa, K. Saji, M. Umehara, K. Yamada, Curved foldings with common creases and crease patterns, Adv. App. Math., 121(2020), 102083.
  • [31] S. Izumiya, H. Katsumi, T. Yamasaki, The rectifying developable and the spherical Darboux image of a space curve, Banach Center Publ., 50(1999), 137-149.
  • [32] G. H. Georgiev, C. L. Dinkova, Focal curves of geodesics on generalized cylinders, ARPN J. Engineering and Applied Sciences, 14(11)(2019), 2058-2068.
There are 32 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nabil Althibany 0000-0001-8057-2938

Publication Date June 1, 2022
Submission Date November 8, 2021
Acceptance Date February 24, 2022
Published in Issue Year 2022

Cite

APA Althibany, N. (2022). Generalized Cylinder with Geodesic and Line of Curvature Parameterizations. Fundamental Journal of Mathematics and Applications, 5(2), 106-113. https://doi.org/10.33401/fujma.1020437
AMA Althibany N. Generalized Cylinder with Geodesic and Line of Curvature Parameterizations. Fundam. J. Math. Appl. June 2022;5(2):106-113. doi:10.33401/fujma.1020437
Chicago Althibany, Nabil. “Generalized Cylinder With Geodesic and Line of Curvature Parameterizations”. Fundamental Journal of Mathematics and Applications 5, no. 2 (June 2022): 106-13. https://doi.org/10.33401/fujma.1020437.
EndNote Althibany N (June 1, 2022) Generalized Cylinder with Geodesic and Line of Curvature Parameterizations. Fundamental Journal of Mathematics and Applications 5 2 106–113.
IEEE N. Althibany, “Generalized Cylinder with Geodesic and Line of Curvature Parameterizations”, Fundam. J. Math. Appl., vol. 5, no. 2, pp. 106–113, 2022, doi: 10.33401/fujma.1020437.
ISNAD Althibany, Nabil. “Generalized Cylinder With Geodesic and Line of Curvature Parameterizations”. Fundamental Journal of Mathematics and Applications 5/2 (June 2022), 106-113. https://doi.org/10.33401/fujma.1020437.
JAMA Althibany N. Generalized Cylinder with Geodesic and Line of Curvature Parameterizations. Fundam. J. Math. Appl. 2022;5:106–113.
MLA Althibany, Nabil. “Generalized Cylinder With Geodesic and Line of Curvature Parameterizations”. Fundamental Journal of Mathematics and Applications, vol. 5, no. 2, 2022, pp. 106-13, doi:10.33401/fujma.1020437.
Vancouver Althibany N. Generalized Cylinder with Geodesic and Line of Curvature Parameterizations. Fundam. J. Math. Appl. 2022;5(2):106-13.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a