Research Article
BibTex RIS Cite
Year 2022, , 228 - 233, 01.12.2022
https://doi.org/10.33401/fujma.1124502

Abstract

References

  • [1] S. Roman, Coding and Information Theory, Springer-Verlag, 1992.
  • [2] J. Wolfman, Negacyclic and cyclic codes over Z4, IEEE Trans. Inform. Theory, 45(7), (1999), 2527-2532.
  • [3] J. F. Qian, L. N. Zhang, S. X. Zhu, (1+u)-constacyclic and cyclic codes over F2 +uF2, Appl. Math. Letters, 19(8), (2006), 820-823.
  • [4] J. F. Qian, L. N. Zhang, S. X. Zhu, Constacyclic and cyclic codes over F2 +uF2 +u2F2, IEICE Trans. Fund. Electron., Commun. and Comput. Sci., 89(6), (2006), 1863-1865.
  • [5] X. Xiaofang, (1+v)-constacyclic codes over F2 +uF2 +vF2, Computer Eng. and Appl., 49(12), (2013), 77-79.
  • [6] M. Ozkan, A. Dertli, Y. Cengellenmis, On Gray images of constacyclic codes over the finite ring F2 +u1F2 +u2F2, TWMS J. Appl. Eng. Math., 9(4), (2019), 876-881.

Constacyclic and Negacyclic Codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ and their Equivalents over $\mathbb{F}_{2}$

Year 2022, , 228 - 233, 01.12.2022
https://doi.org/10.33401/fujma.1124502

Abstract

In this work, we consider the finite ring $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$, $u^{2}=1, v^{2}=0$, $u\cdot v=v\cdot u=0$ which is not Frobenius and chain ring. We studied constacyclic and negacyclic codes in $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ with odd length. These codes are compared with codes that had priorly been obtained on the finite field $\mathbb{F}_{2}$. Moreover, we indicate that the Gray image of a constacyclic and negacyclic code over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ with odd length $n$ is a quasicyclic code of index $4$ with length $4n$ in $\mathbb{F}_{2}$. In particular, the Gray images are applied to two different rings $S_{1}=\mathbb{F}_{2}+v\mathbb{F}_{2}$, $v^{2}=0$ and $S_{2}=\mathbb{F}_{2}+u\mathbb{F}_{2}$, $u^{2}=1$ and negacyclic and constacyclic images of these rings are also discussed.

References

  • [1] S. Roman, Coding and Information Theory, Springer-Verlag, 1992.
  • [2] J. Wolfman, Negacyclic and cyclic codes over Z4, IEEE Trans. Inform. Theory, 45(7), (1999), 2527-2532.
  • [3] J. F. Qian, L. N. Zhang, S. X. Zhu, (1+u)-constacyclic and cyclic codes over F2 +uF2, Appl. Math. Letters, 19(8), (2006), 820-823.
  • [4] J. F. Qian, L. N. Zhang, S. X. Zhu, Constacyclic and cyclic codes over F2 +uF2 +u2F2, IEICE Trans. Fund. Electron., Commun. and Comput. Sci., 89(6), (2006), 1863-1865.
  • [5] X. Xiaofang, (1+v)-constacyclic codes over F2 +uF2 +vF2, Computer Eng. and Appl., 49(12), (2013), 77-79.
  • [6] M. Ozkan, A. Dertli, Y. Cengellenmis, On Gray images of constacyclic codes over the finite ring F2 +u1F2 +u2F2, TWMS J. Appl. Eng. Math., 9(4), (2019), 876-881.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mustafa Özkan 0000-0001-7398-8564

Berk Yenice 0000-0002-7370-6376

Ayşe Tuğba Güroğlu 0000-0001-9306-0296

Publication Date December 1, 2022
Submission Date June 1, 2022
Acceptance Date September 23, 2022
Published in Issue Year 2022

Cite

APA Özkan, M., Yenice, B., & Güroğlu, A. T. (2022). Constacyclic and Negacyclic Codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ and their Equivalents over $\mathbb{F}_{2}$. Fundamental Journal of Mathematics and Applications, 5(4), 228-233. https://doi.org/10.33401/fujma.1124502
AMA Özkan M, Yenice B, Güroğlu AT. Constacyclic and Negacyclic Codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ and their Equivalents over $\mathbb{F}_{2}$. Fundam. J. Math. Appl. December 2022;5(4):228-233. doi:10.33401/fujma.1124502
Chicago Özkan, Mustafa, Berk Yenice, and Ayşe Tuğba Güroğlu. “Constacyclic and Negacyclic Codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ and Their Equivalents over $\mathbb{F}_{2}$”. Fundamental Journal of Mathematics and Applications 5, no. 4 (December 2022): 228-33. https://doi.org/10.33401/fujma.1124502.
EndNote Özkan M, Yenice B, Güroğlu AT (December 1, 2022) Constacyclic and Negacyclic Codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ and their Equivalents over $\mathbb{F}_{2}$. Fundamental Journal of Mathematics and Applications 5 4 228–233.
IEEE M. Özkan, B. Yenice, and A. T. Güroğlu, “Constacyclic and Negacyclic Codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ and their Equivalents over $\mathbb{F}_{2}$”, Fundam. J. Math. Appl., vol. 5, no. 4, pp. 228–233, 2022, doi: 10.33401/fujma.1124502.
ISNAD Özkan, Mustafa et al. “Constacyclic and Negacyclic Codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ and Their Equivalents over $\mathbb{F}_{2}$”. Fundamental Journal of Mathematics and Applications 5/4 (December 2022), 228-233. https://doi.org/10.33401/fujma.1124502.
JAMA Özkan M, Yenice B, Güroğlu AT. Constacyclic and Negacyclic Codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ and their Equivalents over $\mathbb{F}_{2}$. Fundam. J. Math. Appl. 2022;5:228–233.
MLA Özkan, Mustafa et al. “Constacyclic and Negacyclic Codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ and Their Equivalents over $\mathbb{F}_{2}$”. Fundamental Journal of Mathematics and Applications, vol. 5, no. 4, 2022, pp. 228-33, doi:10.33401/fujma.1124502.
Vancouver Özkan M, Yenice B, Güroğlu AT. Constacyclic and Negacyclic Codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}+v\mathbb{F}_{2}$ and their Equivalents over $\mathbb{F}_{2}$. Fundam. J. Math. Appl. 2022;5(4):228-33.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a