Research Article
BibTex RIS Cite
Year 2023, , 89 - 100, 30.06.2023
https://doi.org/10.33401/fujma.1163741

Abstract

References

  • [1] A. H. Boozer, Physics of magnetically confined plasmas, Rev. Mod. Phys., 76 (2004), 1071–1141.
  • [2] H. M. Dida, F. Hathout, Killing magnetic flux surfaces in the Heisenberg three group, Facta Universitatis (NIS) Ser. Math. Inform., 37(5) (2022), 975–991.
  • [3] Z. Erjavec, J. Inoguchi, Killing magnetic curves in Sol space, Math. Phys. Anal. Geom., 21(2018), 15.
  • [4] Z. Erjavec, J. Inoguchi, Magnetic curves in Sol3, J. Nonlinear Math. Phys., 25(2)(2018), 198-210.
  • [5] R. D. Hazeltine, J. D. Meiss, Plasma Confinement, Dover Publications, inc. Mineola, New York, 2003.
  • [6] T. Körpinar, R. C. Demirkol, Z. Körpinar, Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space, Optik, 238 (2021), 166403.
  • [7] T. Körpinar, R. C. Demirkol, Z. Körpinar, New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction, Phys. Scr., 96 (2021), 085219.
  • [8] Talat Körpinaret, R. C. Demirkol, V. Asil, Z. Körpinar, Magnetic flux surfaces by the fractional Heisenberg antiferromagnetic flow of magnetic b-lines in binormal direction in Minkowski space, J. Magn. Magn. Mater., 549 (2022), 168952.
  • [9] Z. Ozdemir, İ. Gök, Y. Yaylı, F. N. Ekmekçi, Killing magnetic flux surfaces in Euclidean 3-space, Honam Math. J. 41(2) (2019), 329–342.
  • [10] T.S. Pedersen, A. H. Boozer, Confinement of nonneutral plasmas on magnetic surfaces, Phys. Rev. Lett. 88 (2002), 205002.
  • [11] M. Barros, A. Romero, Magnetic vortices, EPL 77 (2007), 34002.
  • [12] R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, Wiley, ISBN 0-471-07392-X, 1960.
  • [13] S. R. Hudson, E. Startsev, E. Feibush, A new class of magnetic confinement device in the shape of a knot, Phys. Plasmas, 21(1) (2014), 010705.
  • [14] W. Thurston, Three-dimensional geometry and topology, Princenton Math. Ser. 35, Princenton Univ. Press, Princenton, NJ, (1997).
  • [15] M. Troyanov, L’horizon de SOL. Expo. Math., 16 (1998), 441–479.
  • [16] Walter. A. Strauss, Partial differential equations: An introduction, Math. Gaz., 77(479) (1993), 286–287 ISBN 0-471-57364-7, Wiley.

Flux Surfaces According to Killing Magnetic Vectors in Riemannian Space $\mathbb{S}ol3$

Year 2023, , 89 - 100, 30.06.2023
https://doi.org/10.33401/fujma.1163741

Abstract

In this paper, we define flux surface as surfaces in which its normal vector is orthogonal to the vector corresponding to a flux with its associate scalar flux functions in ambient manifold M. Next, we determine, in 3-dimensional homogenous Riemannian manifold $\mathbb{S}ol3$, the parametric flux surfaces according to the flux corresponding to the Killing magnetic vectors and we calculate its associate scalar flux functions. Finally, examples of such surfaces are presented with their graphical representation in Euclidean space.

References

  • [1] A. H. Boozer, Physics of magnetically confined plasmas, Rev. Mod. Phys., 76 (2004), 1071–1141.
  • [2] H. M. Dida, F. Hathout, Killing magnetic flux surfaces in the Heisenberg three group, Facta Universitatis (NIS) Ser. Math. Inform., 37(5) (2022), 975–991.
  • [3] Z. Erjavec, J. Inoguchi, Killing magnetic curves in Sol space, Math. Phys. Anal. Geom., 21(2018), 15.
  • [4] Z. Erjavec, J. Inoguchi, Magnetic curves in Sol3, J. Nonlinear Math. Phys., 25(2)(2018), 198-210.
  • [5] R. D. Hazeltine, J. D. Meiss, Plasma Confinement, Dover Publications, inc. Mineola, New York, 2003.
  • [6] T. Körpinar, R. C. Demirkol, Z. Körpinar, Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space, Optik, 238 (2021), 166403.
  • [7] T. Körpinar, R. C. Demirkol, Z. Körpinar, New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction, Phys. Scr., 96 (2021), 085219.
  • [8] Talat Körpinaret, R. C. Demirkol, V. Asil, Z. Körpinar, Magnetic flux surfaces by the fractional Heisenberg antiferromagnetic flow of magnetic b-lines in binormal direction in Minkowski space, J. Magn. Magn. Mater., 549 (2022), 168952.
  • [9] Z. Ozdemir, İ. Gök, Y. Yaylı, F. N. Ekmekçi, Killing magnetic flux surfaces in Euclidean 3-space, Honam Math. J. 41(2) (2019), 329–342.
  • [10] T.S. Pedersen, A. H. Boozer, Confinement of nonneutral plasmas on magnetic surfaces, Phys. Rev. Lett. 88 (2002), 205002.
  • [11] M. Barros, A. Romero, Magnetic vortices, EPL 77 (2007), 34002.
  • [12] R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, Wiley, ISBN 0-471-07392-X, 1960.
  • [13] S. R. Hudson, E. Startsev, E. Feibush, A new class of magnetic confinement device in the shape of a knot, Phys. Plasmas, 21(1) (2014), 010705.
  • [14] W. Thurston, Three-dimensional geometry and topology, Princenton Math. Ser. 35, Princenton Univ. Press, Princenton, NJ, (1997).
  • [15] M. Troyanov, L’horizon de SOL. Expo. Math., 16 (1998), 441–479.
  • [16] Walter. A. Strauss, Partial differential equations: An introduction, Math. Gaz., 77(479) (1993), 286–287 ISBN 0-471-57364-7, Wiley.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nourelhouda Benmensour 0000-0002-6774-5256

Fouzi Hathout 0000-0001-5278-5944

Early Pub Date May 25, 2023
Publication Date June 30, 2023
Submission Date September 16, 2022
Acceptance Date April 30, 2023
Published in Issue Year 2023

Cite

APA Benmensour, N., & Hathout, F. (2023). Flux Surfaces According to Killing Magnetic Vectors in Riemannian Space $\mathbb{S}ol3$. Fundamental Journal of Mathematics and Applications, 6(2), 89-100. https://doi.org/10.33401/fujma.1163741
AMA Benmensour N, Hathout F. Flux Surfaces According to Killing Magnetic Vectors in Riemannian Space $\mathbb{S}ol3$. Fundam. J. Math. Appl. June 2023;6(2):89-100. doi:10.33401/fujma.1163741
Chicago Benmensour, Nourelhouda, and Fouzi Hathout. “Flux Surfaces According to Killing Magnetic Vectors in Riemannian Space $\mathbb{S}ol3$”. Fundamental Journal of Mathematics and Applications 6, no. 2 (June 2023): 89-100. https://doi.org/10.33401/fujma.1163741.
EndNote Benmensour N, Hathout F (June 1, 2023) Flux Surfaces According to Killing Magnetic Vectors in Riemannian Space $\mathbb{S}ol3$. Fundamental Journal of Mathematics and Applications 6 2 89–100.
IEEE N. Benmensour and F. Hathout, “Flux Surfaces According to Killing Magnetic Vectors in Riemannian Space $\mathbb{S}ol3$”, Fundam. J. Math. Appl., vol. 6, no. 2, pp. 89–100, 2023, doi: 10.33401/fujma.1163741.
ISNAD Benmensour, Nourelhouda - Hathout, Fouzi. “Flux Surfaces According to Killing Magnetic Vectors in Riemannian Space $\mathbb{S}ol3$”. Fundamental Journal of Mathematics and Applications 6/2 (June 2023), 89-100. https://doi.org/10.33401/fujma.1163741.
JAMA Benmensour N, Hathout F. Flux Surfaces According to Killing Magnetic Vectors in Riemannian Space $\mathbb{S}ol3$. Fundam. J. Math. Appl. 2023;6:89–100.
MLA Benmensour, Nourelhouda and Fouzi Hathout. “Flux Surfaces According to Killing Magnetic Vectors in Riemannian Space $\mathbb{S}ol3$”. Fundamental Journal of Mathematics and Applications, vol. 6, no. 2, 2023, pp. 89-100, doi:10.33401/fujma.1163741.
Vancouver Benmensour N, Hathout F. Flux Surfaces According to Killing Magnetic Vectors in Riemannian Space $\mathbb{S}ol3$. Fundam. J. Math. Appl. 2023;6(2):89-100.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a