Research Article
BibTex RIS Cite
Year 2024, , 77 - 86, 30.06.2024
https://doi.org/10.33401/fujma.1383885

Abstract

References

  • [1] S.S. Dragomir, On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5(4) (2001), 775-788. $ \href{http://dx.doi.org/10.11650/twjm/1500574995}{[\mbox{CrossRef}]} $
  • [2] F. Chen, On Hermite-Hadamard type inequalities for s-convex functions on the coordinates via Riemann-Liouville fractional integrals, J. Appl. Math., 2014 (2014), Article ID 248710:1-8. $ \href{https://doi.org/10.1155/2014/248710}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84901778648&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Hermite-Hadamard+type+inequalities+for+s-convex+functions+on+the+coordinates+via+Riemann-Liouville+fractional+integrals%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000336289900001}{[\mbox{Web of Science}]} $
  • [3] M.Z. Sarıkaya, On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Transforms Spec. Funct., 25(2) (2014), 134-147. $ \href{https://doi.org/10.1080/10652469.2013.824436}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84890430251&origin=resultslist&sort=plf-f&src=s&sid=f4c3eebe11d050ef6a99c3daef5b4602&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+Hermite-Hadamard-type+inequalities+for+co-ordinated+convex+function+via+fractional+integrals%22%29&sl=81&sessionSearchId=f4c3eebe11d050ef6a99c3daef5b4602&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000328110600005}{[\mbox{Web of Science}]} $
  • [4] M.A. Latif and S.S. Dragomir, On some new inequalities for differentiable co-ordinated convex functions, J. Inequal. Appl., 2012 (2012), 28. $ \href{https://doi.org/10.1186/1029-242X-2012-28}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84870407675&origin=resultslist&sort=plf-f&src=s&sid=f4c3eebe11d050ef6a99c3daef5b4602&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+some+new+inequalities+for+differentiable%22%29&sl=81&sessionSearchId=f4c3eebe11d050ef6a99c3daef5b4602&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000303883200001}{[\mbox{Web of Science}]} $
  • [5] S. Erden and M.Z. Sarıkaya, On the Hermite-Hadamard-type and Ostrowski type inequalities for the co-ordinated convex functions, Palestine J. Math., 6(1) (2017), 257-270. $\href{https://pjm.ppu.edu/paper/321}{[\mbox{Web}]} $
  • [6] S. Erden and M.Z. Sarıkaya, Some inequalities for double integrals and applications for cubature formula, Acta Univ. Sapientiae, Math., 11(2) (2019), 271-295. $\href{https://doi.org/10.2478/ausm-2019-0021}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85082131341&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+inequalities+for+double+integrals+and+applications+for+cubature+formula%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000518406900003}{[\mbox{Web of Science}]} $
  • [7] M.Z. Sarıkaya, E. Set, M.E. Özdemir and S.S. Dragomir, New some Hadamard’s type inequalities for co-ordineted convex functions, Tamsui Oxf. J. Math. Sci., 28(2) (2010), 137-152. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84875239482&origin=resultslist&sort=plf-f&src=s&sid=f4c3eebe11d050ef6a99c3daef5b4602&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22New+some+Hadamard%27s+type+inequalities+for+co-ordinated+convex+functions%22%29&sl=81&sessionSearchId=f4c3eebe11d050ef6a99c3daef5b4602&relpos=0}{[\mbox{Scopus}]} $
  • [8] D.Y. Hwang, K.L. Seng and G.S. Yang, Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwanese J. Math.,11(1) (2007), 63-73. $ \href{https://doi.org/10.11650/twjm/1500404635}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-34250215947&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+Hadamard%27s+inequalities+for+co-ordinated+convex+functions+in+a+rectangle+from+the+plane%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000245526600006}{[\mbox{Web of Science}]} $
  • [9] M.A. Latif and M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinetes, Int. Math. Forum, 4(47) (2009), 2327-2338. $ \href{https://www.m-hikari.com/imf-password2009/45-48-2009/latifIMF45-48-2009.pdf}{[\mbox{Web}]} $
  • [10] M.A. Latif, S. Hussain and S.S. Dragomir, New Ostrowski type inequalities for co-ordinated convex functions, Transylvanian J. Math. Mech., 4(2) (2012), 125-136. $ \href{http://tjmm.edyropress.ro/journal/12040204.pdf}{[\mbox{Web}]} $
  • [11] M.Z. Sarıkaya, Some inequalities for differentiable co-ordinated convex mappings, Asian-Eur J. Math., 8(3)1550058(2015), 1-21. $ \href{https://doi.org/10.1142/S1793557115500588}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84951746799&origin=resultslist&sort=plf-f&src=s&sid=f4c3eebe11d050ef6a99c3daef5b4602&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+inequalities+for+differentiable+coordinated+convex+mappings%22%29&sl=81&sessionSearchId=f4c3eebe11d050ef6a99c3daef5b4602&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000214277200021}{[\mbox{Web of Science}]} $
  • [12] M.A. Latif and M. Alomari, On the Hadamard-type inequalities for h-convex functions on the co-ordinetes, Int. J. Math. Anal., 3(33) (2009), 1645-1656. $ \href{https://www.m-hikari.com/ijma/ijma-password-2009/ijma-password33-36-2009/latifIJMA33-36-2009.pdf}{[\mbox{Web}]} $
  • [13] M.E. Özdemir, E. Set and M.Z. Sarıkaya, Some new hadamard type inequalities for co-ordinated m-Convex and (a;m)-Convex Functions, Hacettepe J. Math. Stat., 40(2) (2011), 219-229. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-80052739706&origin=resultslist&sort=plf-f&src=s&sid=f4c3eebe11d050ef6a99c3daef5b4602&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22SOME+NEW+HADAMARD+TYPE+INEQUALITIES+FOR+CO-ORDINATED%22%29&sl=81&sessionSearchId=f4c3eebe11d050ef6a99c3daef5b4602&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000291713800008}{[\mbox{Web of Science}]} $
  • [14] J. Park, Some Hadamard’s type inequalities for co-ordinated (s;m)-convex mappings in the second sense, Far East J. Appl. Math., 51(2) (211), 205–216. $ \href{https://www.researchgate.net/publication/267163168_Some_Hadamard's_type_inequalities_for_co-ordinated_sm-convex_mappings_in_the_second_sense}{[\mbox{Web}]} $
  • [15] G. Anastassiou, Ostrowski type inequalities, Proc. Am. Math. Soc., 123(12) (1995), 375-378. $ \href{https://doi.org/10.2307/2161906}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-21844481304&origin=resultslist&sort=plf-f&src=s&sid=276bfa7203558b76452503c68fcf40c6&sot=b&sdt=cl&cluster=scoexactsrctitle%2C%22Proceedings+Of+The+American+Mathematical+Society%22%2Ct&s=TITLE-ABS-KEY%28%22Ostrowski+type+inequalities%22%29&sl=42&sessionSearchId=276bfa7203558b76452503c68fcf40c6&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1995TM66500027}{[\mbox{Web of Science}]} $
  • [16] P. Cerone, S.S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math., 32(4) (1999), 698–712. $ \href{http://dx.doi.org/10.1515/dema-1999-0404}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-18544380048&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+Ostrowski+type+inequalities+for+n-time+differentiable+mappings+and+applications%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} $
  • [17] M.A. Fink, Bounds on the deviation of a function from its averages, Czec. Math. J., 42 (117) (1992), 289-310. $ \href{http://dml.cz/dmlcz/128336}{[\mbox{Web}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1992KC73300010}{[\mbox{Web of Science}]} $
  • [18] S. Erden, M.Z. Sarıkaya and H. Budak, New weighted inequalities for higher order derivatives and applications, Filomat, 32(12) (2018), 4419-4433. $ \href{https://dx.doi.org/10.2298/FIL1812419E}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85061454688&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22New+weighted+inequalities+for+higher+order+derivatives+and+applications%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000461182200027}{[\mbox{Web of Science}]} $
  • [19] Z. Changjian and W.S. Cheung,On Ostrowski-type inequalities heigher-order partial derivatives, J. Inequal. Appl., 2010 (2010), Article ID: 960672:1-8. $ \href{https://doi.org/10.1155/2010/960672}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-80052691180&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Ostrowski-Type+Inequalities+for+Higher-Order+Partial+Derivatives%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000276301800001}{[\mbox{Web of Science}]} $
  • [20] G. Hanna, S.S. Dragomir and P. Cerone, A General Ostrowski type inequality for double integrals, Tamkang J. Math., 33(4) (2002), 319-333. $ \href{https://doi.org/10.5556/j.tkjm.33.2002.280}{[\mbox{CrossRef}]} $
  • [21] N. Ujevic, Ostrowski-Grüss type inequalities in two dimensional, J. of Ineq. in Pure and Appl. Math., 4(5), Article 101 (2003), 1-12. $ \href{https://www.emis.de/journals/JIPAM/images/003_03/003_03_www.pdf}{[\mbox{Web}]} $
  • [22] S. Erden and M.Z. Sarıkaya, On the Hermite- Hadamard’s and Ostrowski’s inequalities for the co-ordinated convex functions, New Trend Math. Sci., 5(3) (2017):33-45. $ \href{http://dx.doi.org/10.20852/ntmsci.2017.182}{[\mbox{CrossRef}]} $

New Weighted Inequalities for Functions Whose Higher-Order Partial Derivatives Are Co-Ordinated Convex

Year 2024, , 77 - 86, 30.06.2024
https://doi.org/10.33401/fujma.1383885

Abstract

The purpose of this study is to establish recent inequalities based on double integrals of mappings whose higher-order partial derivatives in absolute value are convex on the co-ordinates on rectangle from the plane. Also, some special cases of results improved in this study are examined.

References

  • [1] S.S. Dragomir, On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5(4) (2001), 775-788. $ \href{http://dx.doi.org/10.11650/twjm/1500574995}{[\mbox{CrossRef}]} $
  • [2] F. Chen, On Hermite-Hadamard type inequalities for s-convex functions on the coordinates via Riemann-Liouville fractional integrals, J. Appl. Math., 2014 (2014), Article ID 248710:1-8. $ \href{https://doi.org/10.1155/2014/248710}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84901778648&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Hermite-Hadamard+type+inequalities+for+s-convex+functions+on+the+coordinates+via+Riemann-Liouville+fractional+integrals%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000336289900001}{[\mbox{Web of Science}]} $
  • [3] M.Z. Sarıkaya, On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Transforms Spec. Funct., 25(2) (2014), 134-147. $ \href{https://doi.org/10.1080/10652469.2013.824436}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84890430251&origin=resultslist&sort=plf-f&src=s&sid=f4c3eebe11d050ef6a99c3daef5b4602&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+Hermite-Hadamard-type+inequalities+for+co-ordinated+convex+function+via+fractional+integrals%22%29&sl=81&sessionSearchId=f4c3eebe11d050ef6a99c3daef5b4602&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000328110600005}{[\mbox{Web of Science}]} $
  • [4] M.A. Latif and S.S. Dragomir, On some new inequalities for differentiable co-ordinated convex functions, J. Inequal. Appl., 2012 (2012), 28. $ \href{https://doi.org/10.1186/1029-242X-2012-28}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84870407675&origin=resultslist&sort=plf-f&src=s&sid=f4c3eebe11d050ef6a99c3daef5b4602&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+some+new+inequalities+for+differentiable%22%29&sl=81&sessionSearchId=f4c3eebe11d050ef6a99c3daef5b4602&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000303883200001}{[\mbox{Web of Science}]} $
  • [5] S. Erden and M.Z. Sarıkaya, On the Hermite-Hadamard-type and Ostrowski type inequalities for the co-ordinated convex functions, Palestine J. Math., 6(1) (2017), 257-270. $\href{https://pjm.ppu.edu/paper/321}{[\mbox{Web}]} $
  • [6] S. Erden and M.Z. Sarıkaya, Some inequalities for double integrals and applications for cubature formula, Acta Univ. Sapientiae, Math., 11(2) (2019), 271-295. $\href{https://doi.org/10.2478/ausm-2019-0021}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85082131341&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+inequalities+for+double+integrals+and+applications+for+cubature+formula%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000518406900003}{[\mbox{Web of Science}]} $
  • [7] M.Z. Sarıkaya, E. Set, M.E. Özdemir and S.S. Dragomir, New some Hadamard’s type inequalities for co-ordineted convex functions, Tamsui Oxf. J. Math. Sci., 28(2) (2010), 137-152. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84875239482&origin=resultslist&sort=plf-f&src=s&sid=f4c3eebe11d050ef6a99c3daef5b4602&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22New+some+Hadamard%27s+type+inequalities+for+co-ordinated+convex+functions%22%29&sl=81&sessionSearchId=f4c3eebe11d050ef6a99c3daef5b4602&relpos=0}{[\mbox{Scopus}]} $
  • [8] D.Y. Hwang, K.L. Seng and G.S. Yang, Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwanese J. Math.,11(1) (2007), 63-73. $ \href{https://doi.org/10.11650/twjm/1500404635}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-34250215947&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+Hadamard%27s+inequalities+for+co-ordinated+convex+functions+in+a+rectangle+from+the+plane%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000245526600006}{[\mbox{Web of Science}]} $
  • [9] M.A. Latif and M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinetes, Int. Math. Forum, 4(47) (2009), 2327-2338. $ \href{https://www.m-hikari.com/imf-password2009/45-48-2009/latifIMF45-48-2009.pdf}{[\mbox{Web}]} $
  • [10] M.A. Latif, S. Hussain and S.S. Dragomir, New Ostrowski type inequalities for co-ordinated convex functions, Transylvanian J. Math. Mech., 4(2) (2012), 125-136. $ \href{http://tjmm.edyropress.ro/journal/12040204.pdf}{[\mbox{Web}]} $
  • [11] M.Z. Sarıkaya, Some inequalities for differentiable co-ordinated convex mappings, Asian-Eur J. Math., 8(3)1550058(2015), 1-21. $ \href{https://doi.org/10.1142/S1793557115500588}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84951746799&origin=resultslist&sort=plf-f&src=s&sid=f4c3eebe11d050ef6a99c3daef5b4602&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+inequalities+for+differentiable+coordinated+convex+mappings%22%29&sl=81&sessionSearchId=f4c3eebe11d050ef6a99c3daef5b4602&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000214277200021}{[\mbox{Web of Science}]} $
  • [12] M.A. Latif and M. Alomari, On the Hadamard-type inequalities for h-convex functions on the co-ordinetes, Int. J. Math. Anal., 3(33) (2009), 1645-1656. $ \href{https://www.m-hikari.com/ijma/ijma-password-2009/ijma-password33-36-2009/latifIJMA33-36-2009.pdf}{[\mbox{Web}]} $
  • [13] M.E. Özdemir, E. Set and M.Z. Sarıkaya, Some new hadamard type inequalities for co-ordinated m-Convex and (a;m)-Convex Functions, Hacettepe J. Math. Stat., 40(2) (2011), 219-229. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-80052739706&origin=resultslist&sort=plf-f&src=s&sid=f4c3eebe11d050ef6a99c3daef5b4602&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22SOME+NEW+HADAMARD+TYPE+INEQUALITIES+FOR+CO-ORDINATED%22%29&sl=81&sessionSearchId=f4c3eebe11d050ef6a99c3daef5b4602&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000291713800008}{[\mbox{Web of Science}]} $
  • [14] J. Park, Some Hadamard’s type inequalities for co-ordinated (s;m)-convex mappings in the second sense, Far East J. Appl. Math., 51(2) (211), 205–216. $ \href{https://www.researchgate.net/publication/267163168_Some_Hadamard's_type_inequalities_for_co-ordinated_sm-convex_mappings_in_the_second_sense}{[\mbox{Web}]} $
  • [15] G. Anastassiou, Ostrowski type inequalities, Proc. Am. Math. Soc., 123(12) (1995), 375-378. $ \href{https://doi.org/10.2307/2161906}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-21844481304&origin=resultslist&sort=plf-f&src=s&sid=276bfa7203558b76452503c68fcf40c6&sot=b&sdt=cl&cluster=scoexactsrctitle%2C%22Proceedings+Of+The+American+Mathematical+Society%22%2Ct&s=TITLE-ABS-KEY%28%22Ostrowski+type+inequalities%22%29&sl=42&sessionSearchId=276bfa7203558b76452503c68fcf40c6&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1995TM66500027}{[\mbox{Web of Science}]} $
  • [16] P. Cerone, S.S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math., 32(4) (1999), 698–712. $ \href{http://dx.doi.org/10.1515/dema-1999-0404}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-18544380048&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+Ostrowski+type+inequalities+for+n-time+differentiable+mappings+and+applications%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} $
  • [17] M.A. Fink, Bounds on the deviation of a function from its averages, Czec. Math. J., 42 (117) (1992), 289-310. $ \href{http://dml.cz/dmlcz/128336}{[\mbox{Web}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1992KC73300010}{[\mbox{Web of Science}]} $
  • [18] S. Erden, M.Z. Sarıkaya and H. Budak, New weighted inequalities for higher order derivatives and applications, Filomat, 32(12) (2018), 4419-4433. $ \href{https://dx.doi.org/10.2298/FIL1812419E}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85061454688&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22New+weighted+inequalities+for+higher+order+derivatives+and+applications%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000461182200027}{[\mbox{Web of Science}]} $
  • [19] Z. Changjian and W.S. Cheung,On Ostrowski-type inequalities heigher-order partial derivatives, J. Inequal. Appl., 2010 (2010), Article ID: 960672:1-8. $ \href{https://doi.org/10.1155/2010/960672}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-80052691180&origin=resultslist&sort=plf-f&src=s&sid=bcbe6436c0ddc6c0ea845c8c54a2e78b&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Ostrowski-Type+Inequalities+for+Higher-Order+Partial+Derivatives%22%29&sl=81&sessionSearchId=bcbe6436c0ddc6c0ea845c8c54a2e78b&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000276301800001}{[\mbox{Web of Science}]} $
  • [20] G. Hanna, S.S. Dragomir and P. Cerone, A General Ostrowski type inequality for double integrals, Tamkang J. Math., 33(4) (2002), 319-333. $ \href{https://doi.org/10.5556/j.tkjm.33.2002.280}{[\mbox{CrossRef}]} $
  • [21] N. Ujevic, Ostrowski-Grüss type inequalities in two dimensional, J. of Ineq. in Pure and Appl. Math., 4(5), Article 101 (2003), 1-12. $ \href{https://www.emis.de/journals/JIPAM/images/003_03/003_03_www.pdf}{[\mbox{Web}]} $
  • [22] S. Erden and M.Z. Sarıkaya, On the Hermite- Hadamard’s and Ostrowski’s inequalities for the co-ordinated convex functions, New Trend Math. Sci., 5(3) (2017):33-45. $ \href{http://dx.doi.org/10.20852/ntmsci.2017.182}{[\mbox{CrossRef}]} $
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions, Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

Samet Erden 0000-0001-8430-7533

Mehmet Zeki Sarıkaya 0000-0002-6165-9242

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date October 31, 2023
Acceptance Date April 4, 2024
Published in Issue Year 2024

Cite

APA Erden, S., & Sarıkaya, M. Z. (2024). New Weighted Inequalities for Functions Whose Higher-Order Partial Derivatives Are Co-Ordinated Convex. Fundamental Journal of Mathematics and Applications, 7(2), 77-86. https://doi.org/10.33401/fujma.1383885
AMA Erden S, Sarıkaya MZ. New Weighted Inequalities for Functions Whose Higher-Order Partial Derivatives Are Co-Ordinated Convex. Fundam. J. Math. Appl. June 2024;7(2):77-86. doi:10.33401/fujma.1383885
Chicago Erden, Samet, and Mehmet Zeki Sarıkaya. “New Weighted Inequalities for Functions Whose Higher-Order Partial Derivatives Are Co-Ordinated Convex”. Fundamental Journal of Mathematics and Applications 7, no. 2 (June 2024): 77-86. https://doi.org/10.33401/fujma.1383885.
EndNote Erden S, Sarıkaya MZ (June 1, 2024) New Weighted Inequalities for Functions Whose Higher-Order Partial Derivatives Are Co-Ordinated Convex. Fundamental Journal of Mathematics and Applications 7 2 77–86.
IEEE S. Erden and M. Z. Sarıkaya, “New Weighted Inequalities for Functions Whose Higher-Order Partial Derivatives Are Co-Ordinated Convex”, Fundam. J. Math. Appl., vol. 7, no. 2, pp. 77–86, 2024, doi: 10.33401/fujma.1383885.
ISNAD Erden, Samet - Sarıkaya, Mehmet Zeki. “New Weighted Inequalities for Functions Whose Higher-Order Partial Derivatives Are Co-Ordinated Convex”. Fundamental Journal of Mathematics and Applications 7/2 (June 2024), 77-86. https://doi.org/10.33401/fujma.1383885.
JAMA Erden S, Sarıkaya MZ. New Weighted Inequalities for Functions Whose Higher-Order Partial Derivatives Are Co-Ordinated Convex. Fundam. J. Math. Appl. 2024;7:77–86.
MLA Erden, Samet and Mehmet Zeki Sarıkaya. “New Weighted Inequalities for Functions Whose Higher-Order Partial Derivatives Are Co-Ordinated Convex”. Fundamental Journal of Mathematics and Applications, vol. 7, no. 2, 2024, pp. 77-86, doi:10.33401/fujma.1383885.
Vancouver Erden S, Sarıkaya MZ. New Weighted Inequalities for Functions Whose Higher-Order Partial Derivatives Are Co-Ordinated Convex. Fundam. J. Math. Appl. 2024;7(2):77-86.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a