Research Article
BibTex RIS Cite

New Exact and Numerical Experiments for the Caudrey-Dodd-Gibbon Equation

Year 2024, , 26 - 34, 31.03.2024
https://doi.org/10.33401/fujma.1389595

Abstract

In this study, an exact and a numerical method namely direct algebraic method and collocation finite element method are proposed for solving soliton solutions of a special form of fifth-order KdV (fKdV) equation that is of particular importance: Caudrey-Dodd-Gibbon (CDG) equation. For these aims, homogeneous balance method and septic B-spline functions are used for exact and numerical solutions, respectively. Next, it is proved by applying von-Neumann stability analysis that the numerical method is unconditionally stable. The error norms $L_{2}$ and $L_{\infty }$ have been computed to control proficiency and conservation properties of the suggested algorithm. The obtained numerical results have been listed in the tables. The graphs are modelled so that easy visualization of properties of the problem. Also, the obtained results indicate that our method is favourable for solving such problems.

References

  • [1] A. Goswami, J. Singh and D. Kumar, Numerical simulation of fifth order KdV equations occurring in magneto-acoustic waves, Ain Shams Eng. J., 9(4) (2018), 2265-2273. $\href{https://doi.org/10.1016/j.asej.2017.03.004}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85019689982&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Numerical+simulation+of+fifth+order+KdV+equations+occurring+in+magneto-acoustic+waves%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000454548400165}{[\mbox{Web of Science}]}$
  • [2] C.A.G. Sierra and A.H. Salas, The generalized tanh-coth method to special types of the fth-order KdV equation, Appl Math Comput., 203(2) (2008), 873-880. $\href{https://doi.org/10.1016/j.amc.2008.05.105}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85019689982&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Numerical+simulation+of+fifth+order+KdV+equations+occurring+in+magneto-acoustic+waves%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000259313700043}{[\mbox{Web of Science}]}$
  • [3] D. Kaya, An explicit and numerical solutions of some fth-order KdVequation by decomposition method, Appl Math Comput., 144(2-3) (2003), 353-363. $\href{https://doi.org/10.1016/S0096-3003(02)00412-5}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0038112095&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22An+explicit+and+numerical+solutions+of+some+fifth-order+KdV+equation+by+decomposition+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000184353800012}{[\mbox{Web of Science}]}$
  • [4] T.J. Bridges, G. Derks and G. Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework, Phys. D: Nonlinear Phenom., 172(1-4) (2002), 190-216. $\href{https://doi.org/10.1016/S0167-2789(02)00655-3}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0037112236&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Stability+and+instability+of+solitary+waves+of+the+fifth-order+KdV+equation%3A+a+numerical+framework%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000179357700011}{[\mbox{Web of Science}]}$
  • [5] J.H. He, Variational iteration method for delay differential equation, Commun. Nonlinear Sci. Numer. Simul., 2(4) (1997), 2350-2356. $\href{https://doi.org/10.1016/S1007-5704(97)90008-3}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0006990947&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Variational+iteration+method+for+delay+differential+equation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=1}{[\mbox{Scopus}]} %\href{}{[\mbox{Web of Science}]}$
  • [6] H. Jafari and M. Alipour, Numerical solution of the Davey-Stewartson equations using variational iteration method,World Appl. Sci. J., 8(7) (2010), 814-819.
  • [7] Y. Jalilian, A variational iteration method for solving systems of partial differential equations and for numerical simulation of the reactiondiffusion brusselator model, Sci. Iran., 15(2) (2008), 223-229. $\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000262940100011}{[\mbox{Web of Science}]}$
  • [8] M. Jaulent, M.A. Manna and L. Martinez-Alonso, Fermionic analysis of Davey-Stewartson dromions, Phys. Lett. A, 151 (6-7) (1990), 303- 307. $\href{https://doi.org/10.1016/0375-9601(90)90287-X}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0011681360&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Fermionic+analysis+of+Davey-Stewartson+dromions%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1990ET21400009}{[\mbox{Web of Science}]}$
  • [9] E.V. Krishnan and A. Biswas, Solutions of the Zakharov-Kuznetsov equation with higher order nonlinearity by mapping and ansatz method, Phys. Wave Phenom., 18 (2010), 256-261. $\href{https://doi.org/10.3103/S1541308X10040059}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-78650038597&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Solutions+to+the+Zakharov-Kuznetsov+equation+with+higher+order+nonlinearity+by+mapping+and+ansatz+methods%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000285099900005}{[\mbox{Web of Science}]}$
  • [10] G.D. Pang, Conservation laws of the quantized Davey-Stewartson II system, Phys. Lett. A, 173(3) (1993), 228-232. $\href{https://doi.org/10.1016/0375-9601(93)90268-5}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-43949174569&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Conservation+laws+of+the+quantized+Davey-Stewartson+II+system%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1993KL20500003}{[\mbox{Web of Science}]}$
  • [11] X.Y. Tang, K.W. Chow and C. Rogers, Propagating wave patterns for the ‘resonant’ Davey–Stewartson system, Chaos Solit. Fractals., 42(5) (2009), 2707-2712. $\href{https://doi.org/10.1016/j.chaos.2009.03.146}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-67651202366&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Propagating+wave+patterns+for+the+%E2%80%98resonant%E2%80%99+Davey%E2%80%93Stewartson+system%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000269425200014}{[\mbox{Web of Science}]}$
  • [12] M. Kara and Y. Yazlık, On the solutions of three-dimensional system of difference equations via recursive relations of order two and applications, J. Appl. Anal. Comput., 12(2) (2022), 736-753. $\href{https://doi.org/10.11948/20210305}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85128170166&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+solutions+of+three-dimensional+system+of+difference+equations+via+recursive+relations+of+order+two+and+applications%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000784384600017}{[\mbox{Web of Science}]}$
  • [13] M. Kara and Y. Yazlık, Solvable three-dimensional system of higher-order nonlinear difference equations, Filomat, 36(10) (2022), 3449-3469. $\href{https://doi.org/10.2298/FIL2210449K}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85143813348&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Solvable+three-dimensional+system+of+higher-order+nonlinear+difference+equations%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000916889600019}{[\mbox{Web of Science}]}$
  • [14] M. Kara and Y. Yazlık, On a solvable system of rational difference equations of higher order, Turkish J. Math., 46(2) (2022), 587-611. $\href{https://doi.org/10.3906/mat-2106-1}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85125523157&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+solvable+system+of+rational+difference+equations+of+higher+order%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000696638900001}{[\mbox{Web of Science}]}$
  • [15] A.M. Wazwaz,Multiple-soliton solutions for the fifth order Caudrey–Dodd–Gibbon (CDG) equation, Appl. Math. Comput., 197(2) (2008), 719-724. $\href{https://doi.org/10.1016/j.amc.2007.08.008}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-39449088871&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22+Multiple-soliton+solutions+for+the+fifth+order+Caudrey-Dodd-Gibbon+%28CDG%29+equation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000254254200026}{[\mbox{Web of Science}]}$
  • [16] J. Weiss, On classes of integrable systems and the Painleve property, J. Math. Phys., 25(1) (1984), 13-24. $\href{https://doi.org/10.1063/1.526009}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0000550412&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+classes+of+integrable+systems+and+the+Painleve+property%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1984SA06600002}{[\mbox{Web of Science}]}$
  • [17] B. Jiang and Q. Bi, A study on the bilinear Caudrey Dodd Gibbon equation, Nonlinear Anal., 72(12) (2010), 4530-4533. $\href{https://doi.org/10.1016/j.na.2010.02.030}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-77950368905&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+study+on+the+bilinear+Caudrey+Dodd+Gibbon+equation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000277781500017}{[\mbox{Web of Science}]}$
  • [18] A. Salas, Some exact solutions for the Caudrey-Dodd-Gibbon equation, arXiv preprint, arXiv:0805.2969, 23008. $\href{https://arxiv.org/abs/0805.2969}{[arXiv]}$
  • [19] A.M. Wazwaz, Analytic study of the fifth order integrable nonlinear evolution equations by using the tanh method, Appl. Math. Comput., 174(1) (2006), 289-299. $\href{https://doi.org/10.1016/j.amc.2005.03.029}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33344462593&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Analytic+study+of+the+fifth+order+integrable+nonlinear+evolution+equations+by+using+the+tanh+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000236151200020}{[\mbox{Web of Science}]}$
  • [20] A. Salas, Exact solutions for the general fifth KdV equation by the exp function method, Appl. Math. Comput., 205(1) (2008), 291-297. $\href{https://doi.org/10.1016/j.amc.2008.07.013}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-54249098179&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Exact+solutions+for+the+general+fifth+KdV+equation+by+the+exp+function+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000260585900028}{[\mbox{Web of Science}]}$
  • [21] Y.G. Xu, X.W. Zhou and L. Yao, Solving the fifth order Caudrey Dodd Gibbon (CDG) equation using the exp-function method, Appl. Math. Comput., 206(1) (2008), 70-73. $\href{https://doi.org/10.1016/j.amc.2008.08.052}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-55949130212&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Solving+the+fifth+order+Caudrey+Dodd+Gibbon+%28CDG%29+equation+using+the+exp-function+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000260999200009}{[\mbox{Web of Science}]}$
  • [22] B. Karaağaç, A numerical approach to Caudrey Dodd Gibbon equation via collocation method using quintic B-spline basis, TWMS J. of Apl. & Eng. Math., 9(1) (2019), 1-9. $\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85064170215&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22+A+numerical+approach+to+Caudrey+Dodd+Gibbon+equation+via+collocation+method+using+quintic+B-spline+basis%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000473348800001}{[\mbox{Web of Science}]}$
  • [23] P.M. Prenter, Splines and Variational Methods. New York: John Wiley & Sons; (1975).
  • [24] S.B.G. Karakoç and H. Zeybek, A septic B spline collocation method for solving the generalized equal width wave equation, Kuwait J. Sci., 43(3) (2016), 20-31. $\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84981240464&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+septic+B+spline+collocation+method+for+solving+the+generalized+equal+width+wave+equation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000386468000003}{[\mbox{Web of Science}]}$
  • [25] S.B.G. Karakoç, K. Omrani and D. Sucu, Numerical investigations of shallow water waves via generalized equal width (GEW) equation, Appl. Numer. Math., 162 (2021), 249-264. $\href{https://doi.org/10.1016/j.apnum.2020.12.025}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85098782736&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Numerical+investigations+of+shallow+water+waves+via+generalized+equal+width+%28GEW%29+equation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000643907400003}{[\mbox{Web of Science}]}$
  • [26] S.B.G. Karakoç and H. Zeybek, Solitary wave solutions of the GRLWequation using septic B spline collocation method, Appl. Math. Comput., 289 (2016), 159-171. $\href{https://doi.org/10.1016/j.amc.2016.05.021}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84971281822&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Solitary+wave+solutions+of+the+GRLW+equation+using+septic+B+spline+collocation+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000380754700012}{[\mbox{Web of Science}]}$
  • [27] S. Kutluay, N.M. Yağmurlu and A.S. Karakas¸, An Effective Numerical Approach Based on Cubic Hermite B-spline Collocation Method for Solving the 1D Heat Conduction Equation, New Trend Math. Sci., 10(4) (2022), 20-31. $\href{http://doi.org/10.20852/ntmsci.2022.485}{[\mbox{CrossRef}]}$
  • [28] S.K. Bhowmik and S.B.G. Karakoç, Numerical solutions of generalized equal width wave equation using Petrov Galerkin method, Appl. Anal., 100(4) (2021), 714-734. $\href{https://doi.org/10.1080/00036811.2019.1616696}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85066081626&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Numerical+solutions+of+the+generalized+equal+width+wave+equation+using+the+Petrov%E2%80%93Galerkin+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000469098300001}{[\mbox{Web of Science}]}$
  • [29] N.M. Yağmurlu and A.S. Karakas¸, Numerical solutions of the equal width equation by trigonometric cubic B-spline collocation method based on Rubin–Graves type linearization, Numer. Methods Partial Differ. Equ., 36(5) (2020), 1170-1183. $\href{https://doi.org/10.1002/num.22470}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85085066218&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Numerical+solutions+of+the+equal+width+equation+by+trigonometric+cubic+B-spline+collocation+method+based+on+Rubin--Graves+type+linearization%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000530146700001}{[\mbox{Web of Science}]}$
Year 2024, , 26 - 34, 31.03.2024
https://doi.org/10.33401/fujma.1389595

Abstract

References

  • [1] A. Goswami, J. Singh and D. Kumar, Numerical simulation of fifth order KdV equations occurring in magneto-acoustic waves, Ain Shams Eng. J., 9(4) (2018), 2265-2273. $\href{https://doi.org/10.1016/j.asej.2017.03.004}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85019689982&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Numerical+simulation+of+fifth+order+KdV+equations+occurring+in+magneto-acoustic+waves%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000454548400165}{[\mbox{Web of Science}]}$
  • [2] C.A.G. Sierra and A.H. Salas, The generalized tanh-coth method to special types of the fth-order KdV equation, Appl Math Comput., 203(2) (2008), 873-880. $\href{https://doi.org/10.1016/j.amc.2008.05.105}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85019689982&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Numerical+simulation+of+fifth+order+KdV+equations+occurring+in+magneto-acoustic+waves%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000259313700043}{[\mbox{Web of Science}]}$
  • [3] D. Kaya, An explicit and numerical solutions of some fth-order KdVequation by decomposition method, Appl Math Comput., 144(2-3) (2003), 353-363. $\href{https://doi.org/10.1016/S0096-3003(02)00412-5}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0038112095&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22An+explicit+and+numerical+solutions+of+some+fifth-order+KdV+equation+by+decomposition+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000184353800012}{[\mbox{Web of Science}]}$
  • [4] T.J. Bridges, G. Derks and G. Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework, Phys. D: Nonlinear Phenom., 172(1-4) (2002), 190-216. $\href{https://doi.org/10.1016/S0167-2789(02)00655-3}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0037112236&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Stability+and+instability+of+solitary+waves+of+the+fifth-order+KdV+equation%3A+a+numerical+framework%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=1}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000179357700011}{[\mbox{Web of Science}]}$
  • [5] J.H. He, Variational iteration method for delay differential equation, Commun. Nonlinear Sci. Numer. Simul., 2(4) (1997), 2350-2356. $\href{https://doi.org/10.1016/S1007-5704(97)90008-3}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0006990947&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Variational+iteration+method+for+delay+differential+equation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=1}{[\mbox{Scopus}]} %\href{}{[\mbox{Web of Science}]}$
  • [6] H. Jafari and M. Alipour, Numerical solution of the Davey-Stewartson equations using variational iteration method,World Appl. Sci. J., 8(7) (2010), 814-819.
  • [7] Y. Jalilian, A variational iteration method for solving systems of partial differential equations and for numerical simulation of the reactiondiffusion brusselator model, Sci. Iran., 15(2) (2008), 223-229. $\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000262940100011}{[\mbox{Web of Science}]}$
  • [8] M. Jaulent, M.A. Manna and L. Martinez-Alonso, Fermionic analysis of Davey-Stewartson dromions, Phys. Lett. A, 151 (6-7) (1990), 303- 307. $\href{https://doi.org/10.1016/0375-9601(90)90287-X}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0011681360&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Fermionic+analysis+of+Davey-Stewartson+dromions%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1990ET21400009}{[\mbox{Web of Science}]}$
  • [9] E.V. Krishnan and A. Biswas, Solutions of the Zakharov-Kuznetsov equation with higher order nonlinearity by mapping and ansatz method, Phys. Wave Phenom., 18 (2010), 256-261. $\href{https://doi.org/10.3103/S1541308X10040059}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-78650038597&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Solutions+to+the+Zakharov-Kuznetsov+equation+with+higher+order+nonlinearity+by+mapping+and+ansatz+methods%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000285099900005}{[\mbox{Web of Science}]}$
  • [10] G.D. Pang, Conservation laws of the quantized Davey-Stewartson II system, Phys. Lett. A, 173(3) (1993), 228-232. $\href{https://doi.org/10.1016/0375-9601(93)90268-5}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-43949174569&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Conservation+laws+of+the+quantized+Davey-Stewartson+II+system%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1993KL20500003}{[\mbox{Web of Science}]}$
  • [11] X.Y. Tang, K.W. Chow and C. Rogers, Propagating wave patterns for the ‘resonant’ Davey–Stewartson system, Chaos Solit. Fractals., 42(5) (2009), 2707-2712. $\href{https://doi.org/10.1016/j.chaos.2009.03.146}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-67651202366&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Propagating+wave+patterns+for+the+%E2%80%98resonant%E2%80%99+Davey%E2%80%93Stewartson+system%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000269425200014}{[\mbox{Web of Science}]}$
  • [12] M. Kara and Y. Yazlık, On the solutions of three-dimensional system of difference equations via recursive relations of order two and applications, J. Appl. Anal. Comput., 12(2) (2022), 736-753. $\href{https://doi.org/10.11948/20210305}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85128170166&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+solutions+of+three-dimensional+system+of+difference+equations+via+recursive+relations+of+order+two+and+applications%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000784384600017}{[\mbox{Web of Science}]}$
  • [13] M. Kara and Y. Yazlık, Solvable three-dimensional system of higher-order nonlinear difference equations, Filomat, 36(10) (2022), 3449-3469. $\href{https://doi.org/10.2298/FIL2210449K}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85143813348&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Solvable+three-dimensional+system+of+higher-order+nonlinear+difference+equations%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000916889600019}{[\mbox{Web of Science}]}$
  • [14] M. Kara and Y. Yazlık, On a solvable system of rational difference equations of higher order, Turkish J. Math., 46(2) (2022), 587-611. $\href{https://doi.org/10.3906/mat-2106-1}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85125523157&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+solvable+system+of+rational+difference+equations+of+higher+order%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000696638900001}{[\mbox{Web of Science}]}$
  • [15] A.M. Wazwaz,Multiple-soliton solutions for the fifth order Caudrey–Dodd–Gibbon (CDG) equation, Appl. Math. Comput., 197(2) (2008), 719-724. $\href{https://doi.org/10.1016/j.amc.2007.08.008}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-39449088871&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22+Multiple-soliton+solutions+for+the+fifth+order+Caudrey-Dodd-Gibbon+%28CDG%29+equation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000254254200026}{[\mbox{Web of Science}]}$
  • [16] J. Weiss, On classes of integrable systems and the Painleve property, J. Math. Phys., 25(1) (1984), 13-24. $\href{https://doi.org/10.1063/1.526009}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0000550412&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+classes+of+integrable+systems+and+the+Painleve+property%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1984SA06600002}{[\mbox{Web of Science}]}$
  • [17] B. Jiang and Q. Bi, A study on the bilinear Caudrey Dodd Gibbon equation, Nonlinear Anal., 72(12) (2010), 4530-4533. $\href{https://doi.org/10.1016/j.na.2010.02.030}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-77950368905&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+study+on+the+bilinear+Caudrey+Dodd+Gibbon+equation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000277781500017}{[\mbox{Web of Science}]}$
  • [18] A. Salas, Some exact solutions for the Caudrey-Dodd-Gibbon equation, arXiv preprint, arXiv:0805.2969, 23008. $\href{https://arxiv.org/abs/0805.2969}{[arXiv]}$
  • [19] A.M. Wazwaz, Analytic study of the fifth order integrable nonlinear evolution equations by using the tanh method, Appl. Math. Comput., 174(1) (2006), 289-299. $\href{https://doi.org/10.1016/j.amc.2005.03.029}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33344462593&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Analytic+study+of+the+fifth+order+integrable+nonlinear+evolution+equations+by+using+the+tanh+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000236151200020}{[\mbox{Web of Science}]}$
  • [20] A. Salas, Exact solutions for the general fifth KdV equation by the exp function method, Appl. Math. Comput., 205(1) (2008), 291-297. $\href{https://doi.org/10.1016/j.amc.2008.07.013}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-54249098179&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Exact+solutions+for+the+general+fifth+KdV+equation+by+the+exp+function+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000260585900028}{[\mbox{Web of Science}]}$
  • [21] Y.G. Xu, X.W. Zhou and L. Yao, Solving the fifth order Caudrey Dodd Gibbon (CDG) equation using the exp-function method, Appl. Math. Comput., 206(1) (2008), 70-73. $\href{https://doi.org/10.1016/j.amc.2008.08.052}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-55949130212&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Solving+the+fifth+order+Caudrey+Dodd+Gibbon+%28CDG%29+equation+using+the+exp-function+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000260999200009}{[\mbox{Web of Science}]}$
  • [22] B. Karaağaç, A numerical approach to Caudrey Dodd Gibbon equation via collocation method using quintic B-spline basis, TWMS J. of Apl. & Eng. Math., 9(1) (2019), 1-9. $\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85064170215&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22+A+numerical+approach+to+Caudrey+Dodd+Gibbon+equation+via+collocation+method+using+quintic+B-spline+basis%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000473348800001}{[\mbox{Web of Science}]}$
  • [23] P.M. Prenter, Splines and Variational Methods. New York: John Wiley & Sons; (1975).
  • [24] S.B.G. Karakoç and H. Zeybek, A septic B spline collocation method for solving the generalized equal width wave equation, Kuwait J. Sci., 43(3) (2016), 20-31. $\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84981240464&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+septic+B+spline+collocation+method+for+solving+the+generalized+equal+width+wave+equation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000386468000003}{[\mbox{Web of Science}]}$
  • [25] S.B.G. Karakoç, K. Omrani and D. Sucu, Numerical investigations of shallow water waves via generalized equal width (GEW) equation, Appl. Numer. Math., 162 (2021), 249-264. $\href{https://doi.org/10.1016/j.apnum.2020.12.025}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85098782736&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Numerical+investigations+of+shallow+water+waves+via+generalized+equal+width+%28GEW%29+equation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000643907400003}{[\mbox{Web of Science}]}$
  • [26] S.B.G. Karakoç and H. Zeybek, Solitary wave solutions of the GRLWequation using septic B spline collocation method, Appl. Math. Comput., 289 (2016), 159-171. $\href{https://doi.org/10.1016/j.amc.2016.05.021}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84971281822&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Solitary+wave+solutions+of+the+GRLW+equation+using+septic+B+spline+collocation+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000380754700012}{[\mbox{Web of Science}]}$
  • [27] S. Kutluay, N.M. Yağmurlu and A.S. Karakas¸, An Effective Numerical Approach Based on Cubic Hermite B-spline Collocation Method for Solving the 1D Heat Conduction Equation, New Trend Math. Sci., 10(4) (2022), 20-31. $\href{http://doi.org/10.20852/ntmsci.2022.485}{[\mbox{CrossRef}]}$
  • [28] S.K. Bhowmik and S.B.G. Karakoç, Numerical solutions of generalized equal width wave equation using Petrov Galerkin method, Appl. Anal., 100(4) (2021), 714-734. $\href{https://doi.org/10.1080/00036811.2019.1616696}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85066081626&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Numerical+solutions+of+the+generalized+equal+width+wave+equation+using+the+Petrov%E2%80%93Galerkin+method%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000469098300001}{[\mbox{Web of Science}]}$
  • [29] N.M. Yağmurlu and A.S. Karakas¸, Numerical solutions of the equal width equation by trigonometric cubic B-spline collocation method based on Rubin–Graves type linearization, Numer. Methods Partial Differ. Equ., 36(5) (2020), 1170-1183. $\href{https://doi.org/10.1002/num.22470}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85085066218&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Numerical+solutions+of+the+equal+width+equation+by+trigonometric+cubic+B-spline+collocation+method+based+on+Rubin--Graves+type+linearization%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000530146700001}{[\mbox{Web of Science}]}$
There are 29 citations in total.

Details

Primary Language English
Subjects Numerical Solution of Differential and Integral Equations, Numerical Analysis, Finite Element Analysis
Journal Section Articles
Authors

Seydi Battal Gazi Karakoç 0000-0002-2348-4170

Derya Yıldırım Sucu 0000-0001-8396-8081

Early Pub Date March 29, 2024
Publication Date March 31, 2024
Submission Date November 11, 2023
Acceptance Date March 22, 2024
Published in Issue Year 2024

Cite

APA Karakoç, S. B. G., & Yıldırım Sucu, D. (2024). New Exact and Numerical Experiments for the Caudrey-Dodd-Gibbon Equation. Fundamental Journal of Mathematics and Applications, 7(1), 26-34. https://doi.org/10.33401/fujma.1389595
AMA Karakoç SBG, Yıldırım Sucu D. New Exact and Numerical Experiments for the Caudrey-Dodd-Gibbon Equation. Fundam. J. Math. Appl. March 2024;7(1):26-34. doi:10.33401/fujma.1389595
Chicago Karakoç, Seydi Battal Gazi, and Derya Yıldırım Sucu. “New Exact and Numerical Experiments for the Caudrey-Dodd-Gibbon Equation”. Fundamental Journal of Mathematics and Applications 7, no. 1 (March 2024): 26-34. https://doi.org/10.33401/fujma.1389595.
EndNote Karakoç SBG, Yıldırım Sucu D (March 1, 2024) New Exact and Numerical Experiments for the Caudrey-Dodd-Gibbon Equation. Fundamental Journal of Mathematics and Applications 7 1 26–34.
IEEE S. B. G. Karakoç and D. Yıldırım Sucu, “New Exact and Numerical Experiments for the Caudrey-Dodd-Gibbon Equation”, Fundam. J. Math. Appl., vol. 7, no. 1, pp. 26–34, 2024, doi: 10.33401/fujma.1389595.
ISNAD Karakoç, Seydi Battal Gazi - Yıldırım Sucu, Derya. “New Exact and Numerical Experiments for the Caudrey-Dodd-Gibbon Equation”. Fundamental Journal of Mathematics and Applications 7/1 (March 2024), 26-34. https://doi.org/10.33401/fujma.1389595.
JAMA Karakoç SBG, Yıldırım Sucu D. New Exact and Numerical Experiments for the Caudrey-Dodd-Gibbon Equation. Fundam. J. Math. Appl. 2024;7:26–34.
MLA Karakoç, Seydi Battal Gazi and Derya Yıldırım Sucu. “New Exact and Numerical Experiments for the Caudrey-Dodd-Gibbon Equation”. Fundamental Journal of Mathematics and Applications, vol. 7, no. 1, 2024, pp. 26-34, doi:10.33401/fujma.1389595.
Vancouver Karakoç SBG, Yıldırım Sucu D. New Exact and Numerical Experiments for the Caudrey-Dodd-Gibbon Equation. Fundam. J. Math. Appl. 2024;7(1):26-34.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a