Research Article
BibTex RIS Cite
Year 2024, , 35 - 52, 31.03.2024
https://doi.org/10.33401/fujma.1423906

Abstract

References

  • [1] J. Zhang, L. Yin and W. Cui, The monotonic properties of (p;a)-generalized sigmoid function with application, Pak. J. Statist., 35(2) (2019), 171-185. $\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85073286109&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22The+monotonic+properties+of+%24%28p%2Ca%29%24-generalized+sigmoid+function+with+application%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}$
  • [2] M.I. Jordan, Why the logistic function? A tutorial discussion on probabilities and neural networks, (1995).
  • [3] R.M. Neal, Connectionist learning of belief networks, Artif. Intell., 56(1), 1992, 71-113. $\href{https://doi.org/10.1016/0004-3702(92)90065-6}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-44049116681&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Connectionist+learning+of+belief+networks%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1992JC65200003}{[\mbox{Web of Science}]}$
  • [4] P. McCullagh and J. Nelder, Generalized Linear Models, Second Edition. Chapman & Hall., (1989), ISBN: 9780412317606. $\href{http://dx.doi.org/10.1007/978-1-4899-3242-6}{[\mbox{CrossRef}]}$
  • [5] D. Yu, Softmax function based intuitionistic fuzzy multi-criteria decision making and applications, Oper. Res. Int. J., 16 (2016), 327-348. $\href{https://doi.org/10.1007/s12351-015-0196-7}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-84941369239&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Softmax+function+based+intuitionistic+fuzzy+multi-criteria+decision+making+and+applications%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000380151400010}{[\mbox{Web of Science}]} $
  • [6] R. Torres, R. Salas and H. Astudillo, Time-based hesitant fuzzy information aggregation approach for decision making problems, Int. J. Intell. Syst., 29(6) (2014), 579-595. $\href{https://doi.org/10.1002/int.21658}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-84898965197&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Time-based+hesitant+fuzzy+information+aggregation+approach+for+decision+making+problems%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000334488400006}{[\mbox{Web of Science}]}$
  • [7] I. Goodfellow, Y. Bengio and A. Courville, 6.2.2.3 Softmax Units for Multinoulli Output Distributions, Deep Learning. MIT Press., (2016), 180-184. ISBN 978-0-26203561-3.
  • [8] G.A. Anastassiou, Banach Space Valued Multivariate Multi Layer Neural Network Approximation Based on q-Deformed and l-Parametrized A-Generalized Logistic Function. In: Parametrized, Deformed and General Neural Networks, Studies in Computational Intelligence, 1116. Springer, Cham., (2023), 365-394. $\href{https://doi.org/10.1007/978-3-031-43021-3_15}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85175065590&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Banach+Space+Valued+Multivariate+Multi+Layer+Neural+Network+Approximation+Based+on%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}$
  • [9] A. Arai, Exactly solvable supersymmetric quantum mechanics, J. Math. Anal. Appl., 158(1) (1991), 63-79. $\href{https://doi.org/10.1016/0022-247X(91)90267-4}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-0003107294&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Exactly+solvable+supersymmetric+quantum+mechanics%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1991FW13900006}{[\mbox{Web of Science}]}$
  • [10] G.D. Anderson, M. Vamanamurthy, and M.Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335(2) (2007), 1294-1308. $\href{https://doi.org/10.1016/j.jmaa.2007.02.016}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-34447529172&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Generalized+convexity+and+inequalities%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=2}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000248854000039}{[\mbox{Web of Science}]} $
  • [11] P.S. Bullen, Handbook of Means and Their Inequalities, Springer Science & Business Media (560), 2013. $\href{https://doi.org/10.1007/978-94-017-0399-4}{[\mbox{CrossRef}]}$
  • [12] P.S. Bullen, D.S. Mitrinovic and M. Vasic, Means and Their Inequalities, Springer Science & Business Media 31, 2013. $\href{https://doi.org/10.1007/978-94-017-2226-1}{[\mbox{CrossRef}]}$
  • [13] I. Pinelis, L’Hospital type rules for monotonicity, with applications, J. Ineq. Pure & Appl. Math.3(1) (2002), 1-5.
  • [14] R.G. Miller, Survival Analysis, John Wiley & Sons, (1997), ISBN 0-471-25218-2.
  • [15] B. George, S. Seals and I. Aban, Survival analysis and regression models, J. Nucl. Cardiol., 21 (2014), 686-694. $\href{https://doi.org/10.1007%2Fs12350-014-9908-2}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-84905106194&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Survival+analysis+and+regression+models%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=2}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000339956900005}{[\mbox{Web of Science}]}$
  • [16] S. Karateke, M. Zontul, V.N. Mishra and A.R. Gairola, On the Approximation by Stancu-Type Bivariate Jakimovski–Leviatan–Durrmeyer Operators, La Matematica, 3 (2024), 211–233. $\href{https://doi.org/10.1007/s44007-023-00083-w}{[\mbox{CrossRef}]}$
  • [17] R.A. Chechile, Mathematical tools for hazard function analysis, J. Math. Psychol., 47(5-6) (2003), 478-494. $\href{https://doi.org/10.1016/S0022-2496(03)00063-4}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-67650450179&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Mathematical+tools+for+hazard+function+analysis%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000187348200001}{[\mbox{Web of Science}]}$
  • [18] F. Emmert-Streib and M. Dehmer, Introduction to survival analysis in practice, Mach. Learn. Knowl. Extr., 1(3) (2019), 1013-1038. $\href{https://doi.org/10.3390/make1030058}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85128708055&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Introduction+to+Survival+Analysis+in+Practice%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000647029200001}{[\mbox{Web of Science}]}$

On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function

Year 2024, , 35 - 52, 31.03.2024
https://doi.org/10.33401/fujma.1423906

Abstract

In this article, some mathematical properties of $\left( \iota ,x_{0}\right) $-generalized logistic-type function are presented. This four-parameter generalized function can be considered as a statistical phenomenon enhancing more vigorous survival analysis models. Moreover, the behaviors of the relevant parametric functions obtained are examined with graphics using computer programming language Python 3.9.

References

  • [1] J. Zhang, L. Yin and W. Cui, The monotonic properties of (p;a)-generalized sigmoid function with application, Pak. J. Statist., 35(2) (2019), 171-185. $\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85073286109&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22The+monotonic+properties+of+%24%28p%2Ca%29%24-generalized+sigmoid+function+with+application%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}$
  • [2] M.I. Jordan, Why the logistic function? A tutorial discussion on probabilities and neural networks, (1995).
  • [3] R.M. Neal, Connectionist learning of belief networks, Artif. Intell., 56(1), 1992, 71-113. $\href{https://doi.org/10.1016/0004-3702(92)90065-6}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-44049116681&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Connectionist+learning+of+belief+networks%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1992JC65200003}{[\mbox{Web of Science}]}$
  • [4] P. McCullagh and J. Nelder, Generalized Linear Models, Second Edition. Chapman & Hall., (1989), ISBN: 9780412317606. $\href{http://dx.doi.org/10.1007/978-1-4899-3242-6}{[\mbox{CrossRef}]}$
  • [5] D. Yu, Softmax function based intuitionistic fuzzy multi-criteria decision making and applications, Oper. Res. Int. J., 16 (2016), 327-348. $\href{https://doi.org/10.1007/s12351-015-0196-7}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-84941369239&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Softmax+function+based+intuitionistic+fuzzy+multi-criteria+decision+making+and+applications%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000380151400010}{[\mbox{Web of Science}]} $
  • [6] R. Torres, R. Salas and H. Astudillo, Time-based hesitant fuzzy information aggregation approach for decision making problems, Int. J. Intell. Syst., 29(6) (2014), 579-595. $\href{https://doi.org/10.1002/int.21658}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-84898965197&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Time-based+hesitant+fuzzy+information+aggregation+approach+for+decision+making+problems%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000334488400006}{[\mbox{Web of Science}]}$
  • [7] I. Goodfellow, Y. Bengio and A. Courville, 6.2.2.3 Softmax Units for Multinoulli Output Distributions, Deep Learning. MIT Press., (2016), 180-184. ISBN 978-0-26203561-3.
  • [8] G.A. Anastassiou, Banach Space Valued Multivariate Multi Layer Neural Network Approximation Based on q-Deformed and l-Parametrized A-Generalized Logistic Function. In: Parametrized, Deformed and General Neural Networks, Studies in Computational Intelligence, 1116. Springer, Cham., (2023), 365-394. $\href{https://doi.org/10.1007/978-3-031-43021-3_15}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85175065590&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Banach+Space+Valued+Multivariate+Multi+Layer+Neural+Network+Approximation+Based+on%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}$
  • [9] A. Arai, Exactly solvable supersymmetric quantum mechanics, J. Math. Anal. Appl., 158(1) (1991), 63-79. $\href{https://doi.org/10.1016/0022-247X(91)90267-4}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-0003107294&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Exactly+solvable+supersymmetric+quantum+mechanics%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1991FW13900006}{[\mbox{Web of Science}]}$
  • [10] G.D. Anderson, M. Vamanamurthy, and M.Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335(2) (2007), 1294-1308. $\href{https://doi.org/10.1016/j.jmaa.2007.02.016}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-34447529172&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Generalized+convexity+and+inequalities%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=2}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000248854000039}{[\mbox{Web of Science}]} $
  • [11] P.S. Bullen, Handbook of Means and Their Inequalities, Springer Science & Business Media (560), 2013. $\href{https://doi.org/10.1007/978-94-017-0399-4}{[\mbox{CrossRef}]}$
  • [12] P.S. Bullen, D.S. Mitrinovic and M. Vasic, Means and Their Inequalities, Springer Science & Business Media 31, 2013. $\href{https://doi.org/10.1007/978-94-017-2226-1}{[\mbox{CrossRef}]}$
  • [13] I. Pinelis, L’Hospital type rules for monotonicity, with applications, J. Ineq. Pure & Appl. Math.3(1) (2002), 1-5.
  • [14] R.G. Miller, Survival Analysis, John Wiley & Sons, (1997), ISBN 0-471-25218-2.
  • [15] B. George, S. Seals and I. Aban, Survival analysis and regression models, J. Nucl. Cardiol., 21 (2014), 686-694. $\href{https://doi.org/10.1007%2Fs12350-014-9908-2}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-84905106194&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Survival+analysis+and+regression+models%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=2}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000339956900005}{[\mbox{Web of Science}]}$
  • [16] S. Karateke, M. Zontul, V.N. Mishra and A.R. Gairola, On the Approximation by Stancu-Type Bivariate Jakimovski–Leviatan–Durrmeyer Operators, La Matematica, 3 (2024), 211–233. $\href{https://doi.org/10.1007/s44007-023-00083-w}{[\mbox{CrossRef}]}$
  • [17] R.A. Chechile, Mathematical tools for hazard function analysis, J. Math. Psychol., 47(5-6) (2003), 478-494. $\href{https://doi.org/10.1016/S0022-2496(03)00063-4}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-67650450179&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Mathematical+tools+for+hazard+function+analysis%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000187348200001}{[\mbox{Web of Science}]}$
  • [18] F. Emmert-Streib and M. Dehmer, Introduction to survival analysis in practice, Mach. Learn. Knowl. Extr., 1(3) (2019), 1013-1038. $\href{https://doi.org/10.3390/make1030058}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85128708055&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Introduction+to+Survival+Analysis+in+Practice%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000647029200001}{[\mbox{Web of Science}]}$
There are 18 citations in total.

Details

Primary Language English
Subjects Symbolic Calculation, Mathematical Methods and Special Functions, Applied Mathematics (Other)
Journal Section Articles
Authors

Seda Karateke 0000-0003-1219-0115

Early Pub Date March 29, 2024
Publication Date March 31, 2024
Submission Date January 22, 2024
Acceptance Date March 4, 2024
Published in Issue Year 2024

Cite

APA Karateke, S. (2024). On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function. Fundamental Journal of Mathematics and Applications, 7(1), 35-52. https://doi.org/10.33401/fujma.1423906
AMA Karateke S. On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function. Fundam. J. Math. Appl. March 2024;7(1):35-52. doi:10.33401/fujma.1423906
Chicago Karateke, Seda. “On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function”. Fundamental Journal of Mathematics and Applications 7, no. 1 (March 2024): 35-52. https://doi.org/10.33401/fujma.1423906.
EndNote Karateke S (March 1, 2024) On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function. Fundamental Journal of Mathematics and Applications 7 1 35–52.
IEEE S. Karateke, “On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function”, Fundam. J. Math. Appl., vol. 7, no. 1, pp. 35–52, 2024, doi: 10.33401/fujma.1423906.
ISNAD Karateke, Seda. “On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function”. Fundamental Journal of Mathematics and Applications 7/1 (March 2024), 35-52. https://doi.org/10.33401/fujma.1423906.
JAMA Karateke S. On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function. Fundam. J. Math. Appl. 2024;7:35–52.
MLA Karateke, Seda. “On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function”. Fundamental Journal of Mathematics and Applications, vol. 7, no. 1, 2024, pp. 35-52, doi:10.33401/fujma.1423906.
Vancouver Karateke S. On an $\left( \iota ,x_{0}\right) $-Generalized Logistic-Type Function. Fundam. J. Math. Appl. 2024;7(1):35-52.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a