Research Article
BibTex RIS Cite

Temperature-Dependent Parameters in Enzyme Kinetics: Impacts on Enzyme Denaturation

Year 2024, , 226 - 235, 31.12.2024
https://doi.org/10.33401/fujma.1517334

Abstract

Enzymes are vital proteins in biological systems, responsible for regulating and coordinating numerous essential processes. The incorporation of denaturation rate accounts for the gradual loss of enzyme activity over time, which is particularly significant under experimental conditions where enzymes are susceptible to denaturation. It is noteworthy that adverse environmental conditions, such as high temperature or pH imbalance, can induce enzyme denaturation, leading to a loss of functionality over time. This structural disruption renders enzymes inactive, posing a crucial consideration in long-term enzyme kinetics studies. Furthermore, enzymes typically exhibit reduced catalytic activity at lower temperatures, which is pivotal for understanding their stability and efficacy in biological systems and industrial applications. Accordingly, we developed a mathematical model to investigate enzyme kinetics under varying temperature, aiming to analyse their respective impacts on both enzyme behaviour and product formation.

References

  • [1] H. Lodish, A. Berk, C.A. Kaiser, M. Krieger, M.P. Scott, A. Bretscher, H. Ploegh and P.T. Matsudaira, Molecular Cell Biology (6th ed.), W.H.Freeman & Co Ltd, (2007).
  • [2] A.G. Marangoni, Enzyme Kinetics: A Modern Approach, John Wiley & Sons, (2002), 70-78. $\href{https://doi.org/10.1002/0471267295}{\mbox{[CrossRef]}} $
  • [3] M.M. Mudgal, N. Birudukota and M.A. Doke, Applications of click chemistry in the development of HIV protease inhibitors, Int. J. Med. Chem., 2018 (2018), 2946730. $ \href{https://onlinelibrary.wiley.com/doi/10.1155/2018/2946730}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000440495600001}{\mbox{[Web of Science]}} $
  • [4] A. Geronikaki and P.T. Eleutheriou, Enzymes and enzyme inhibitors—applications in medicine and diagnosis, Int. J. Mol. Sci., 24(6) (2023), 5245. $ \href{https://doi.org/10.3390/ijms24065245}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85151113487&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Enzymes+and+Enzyme+Inhibitors%E2%80%94Applications+in+Medicine+and+Diagnosis%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000959893500001}{\mbox{[Web of Science]}} $
  • [5] J.M. Berg, J.L. Tymoczko, G.J. Gatto Jr. and L. Stryer, Section 8.4, Enzymes Can Be Inhibited by Specific Molecules, Biochemistry. 8th edition. New York: W H Freeman, (2015).
  • [6] L. Michaelis and M. Menten, Die kinetik der invertinwirkung, Biochem. Z., 79 (1913), 333-369. $ \href{https://www.chem.uwec.edu/Chem352_F18/pages/readings/media/Michaelis_&_Menton_1913.pdf}{\mbox{[Web]}} $
  • [7] P. Mendes, H. Messiha, N. Malys and S. Hoops, Enzyme kinetics and computational modeling for systems biology, Methods Enzymol., 467(C) (2009), 583-599. $\href{https://doi.org/10.1016/S0076-6879(09)67022-1}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-71549133050&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=AUTH%28mendes%2C+AND+messiha%2C+AND+malys+AND+hoops%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000272400000023}{\mbox{[Web of Science]}} $
  • [8] D.D. Boehr, R. Nussinov and P.E. Wright, The role of dynamic conformational ensembles in biomolecular recognition, Nat. Chem. Biol., 5(11) (2009), 789-796. $ \href{https://doi.org/10.1038/nchembio.232}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-70350340728&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28The+role+of+dynamic+conformational+ensembles+in+biomolecular+recognition%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000270915000007}{\mbox{[Web of Science]}} $
  • [9] R.A. Azizyan, A.E. Gevorgyan, V.B. Arakelyan and E.S. Gevorgyan, Mathematical modeling of uncompetitive inhibition of bi-substrate enzymatic reactions, Int. J. Biol., Biomol., Agricultural, Food Biotech. Eng., 7 (2013), 974-977. $ \href{https://doi.org/10.5281/zenodo.1088248}{\mbox{[CrossRef]}} $
  • [10] A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, John Wiley & Sons, (2013).
  • [11] H.İ. Eğilmez, A.Y. Morozov, M.R.J. Clokie, J. Shan, A. Letarov and E.E. Galyov, Temperature-dependent virus lifecycle choices may reveal and predict facets of the biology of opportunistic pathogenic bacteria, Sci. Rep., 8(1) (2018), 9642. $ \href{https://doi.org/10.1038/s41598-018-27716-3}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85049229131&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Temperature-dependent+virus+lifecycle+choices+may+reveal+and+predict+facets+of+the+biology+of+opportunistic+pathogenic+bacteria%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000436078500005}{\mbox{[Web of Science]}} $
  • [12] L. Huang, A. Hwang and J. Phillips, Effect of temperature on microbial growth rate-mathematical analysis: the Arrhenius and Eyring-Polanyi connections, J. Food Sci., 76(8) (2011), E553–E560. $ \href{https://doi.org/10.1111/j.1750-3841.2011.02377.x}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-80054744518&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Effect+of+temperature+on+microbial+growth+rate--mathematical+analysis%3A+the+Arrhenius+and+Eyring--Polanyi+connections%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000296234300020}{\mbox{[Web of Science]}} $
  • [13] H.İ. Eğilmez, A.Y. Morozov and E.E. Galyov, Modelling the spatiotemporal complexity of interactions between pathogenic bacteria and a phage with a temperature-dependent life cycle switch, Sci. Rep., 11(1) (2021), 4382. $ \href{https://doi.org/10.1038/s41598-021-83773-1}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85101570421&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Modelling+the+spatiotemporal+complexity+of+interactions+between+pathogenic+bacteria+and+a+phage+with+a+temperature-dependent+life+cycle+switch%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000626731000005}{\mbox{[Web of Science]}} $
  • [14] J.A. Motyan, F. Toth and J. Tozser, Research applications of proteolytic enzymes in molecular biology, Biomolecules, 3(4) (2013), 923-942. $ \href{https://doi.org/10.3390/biom3040923}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000215147000009}{\mbox{[Web of Science]}} $
  • [15] T.D.H. Bugg, Introduction to Enzyme and Coenzyme Chemistry, John Wiley & Sons, (2012). $ \href{https://doi.org/10.1002/9781118348970}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84891585027&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Introduction+to+enzyme+and+coenzyme+chemistry%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} $
  • [16] R.M Daniel, M. Dines and H.H. Petach, The denaturation and degradation of stable enzymes at high temperatures, Biochem. J., 317(1) (1996), 1-11. $ \href{https://doi.org/10.1042/bj3170001}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0029977715&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28The+denaturation+and+degradation+of+stable+enzymes+at+high+temperatures%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1996UX07700001}{\mbox{[Web of Science]}} $
  • [17] M.E. Peterson, R.M. Daniel, M.J. Danson and R. Eisenthal, The dependence of enzyme activity on temperature: determination and validation of parameters, Biochem. J., 402(2) (2007), 331-337. $\href{https://doi.org/10.1042/BJ20061143}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33847757782&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28The+dependence+of+enzyme+activity+on+temperature%3A+determination+and+validation+of+parameters%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000244762500013}{\mbox{[Web of Science]}} $
  • [18] R.M. Daniel, M.J. Danson, R. Eisenthal, C.K. Lee and M.E. Peterson, New parameters controlling the effect of temperature on enzyme activity, Biochem. Soc. Trans., 35(6) (2007), 1543-1546. $\href{https://doi.org/10.1042/BST0351543}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-37749011278&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28New+parameters+controlling+the+effect+of+temperature+on+enzyme+activity%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000251875100038}{\mbox{[Web of Science]}} $
  • [19] R.M. Daniel, M.J. Danson, R. Eisenthal, C.K. Lee and M.E. Peterson, The effect of temperature on enzyme activity: new insights and their implications, Extremophiles, 12(1) (2008), 51-59. $\href{https://doi.org/10.1007/s00792-007-0089-7}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-38049031723&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28The+effect+of+temperature+on+enzyme+activity%3A+new+insights+and+their+implications%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000252191800008}{\mbox{[Web of Science]}} $
  • [20] M.L. Forsling and W.F. Widdas, The effect of temperature on the competitive inhibition of glucose transfer in human erythrocytes by phenolphthalein, phloretin and stilboestrol, Physiol. J., 194(2) (1968), 545-554. $\href{https://doi.org/10.1113/jphysiol.1968.sp008423}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0014253220&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28The+effect+of+temperature+on+the+competitive+inhibition+of+glucose+transfer+in+human+erythrocytes+by+phenolphthalein%2C+phloretin+and+stilboestrol%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} $
  • [21] J. Liu, W. Xia, A.Y. Abdullahi, F. Wu, Q. Ai, D. Feng and J. Zuo, Purification and partial characterization of an acidic a-amylase from a newly isolated bacillus subtilis ZJ-1 that may be applied to feed enzyme, Prep. Biochem. Biotechnol., 45(3) (2015), 259-267. $ \href{https://doi.org/10.1080/10826068.2014.907184}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84964307471&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Purification+and+Partial+Characterization+of+an+Acidic+%24%5Calpha%24-Amylase+from+a+Newly+Isolated+Bacillus+subtilis+ZJ-1+that+may+be+Applied+to+Feed+Enzyme%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000342293800004}{\mbox{[Web of Science]}} $
  • [22] Ç. Çoban, Y. Temel and M. Çiftci, Purification, characterization of glutathion reductase enzyme from sheep splen tissue and investigation of the effects of some antibiotics on enzyme activity, Turkish J. Nat. Sci., 13(1) (2024), 62-69. $ \href{https://doi.org/10.46810/tdfd.1333609}{\mbox{[CrossRef]}} $
Year 2024, , 226 - 235, 31.12.2024
https://doi.org/10.33401/fujma.1517334

Abstract

References

  • [1] H. Lodish, A. Berk, C.A. Kaiser, M. Krieger, M.P. Scott, A. Bretscher, H. Ploegh and P.T. Matsudaira, Molecular Cell Biology (6th ed.), W.H.Freeman & Co Ltd, (2007).
  • [2] A.G. Marangoni, Enzyme Kinetics: A Modern Approach, John Wiley & Sons, (2002), 70-78. $\href{https://doi.org/10.1002/0471267295}{\mbox{[CrossRef]}} $
  • [3] M.M. Mudgal, N. Birudukota and M.A. Doke, Applications of click chemistry in the development of HIV protease inhibitors, Int. J. Med. Chem., 2018 (2018), 2946730. $ \href{https://onlinelibrary.wiley.com/doi/10.1155/2018/2946730}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000440495600001}{\mbox{[Web of Science]}} $
  • [4] A. Geronikaki and P.T. Eleutheriou, Enzymes and enzyme inhibitors—applications in medicine and diagnosis, Int. J. Mol. Sci., 24(6) (2023), 5245. $ \href{https://doi.org/10.3390/ijms24065245}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85151113487&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Enzymes+and+Enzyme+Inhibitors%E2%80%94Applications+in+Medicine+and+Diagnosis%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000959893500001}{\mbox{[Web of Science]}} $
  • [5] J.M. Berg, J.L. Tymoczko, G.J. Gatto Jr. and L. Stryer, Section 8.4, Enzymes Can Be Inhibited by Specific Molecules, Biochemistry. 8th edition. New York: W H Freeman, (2015).
  • [6] L. Michaelis and M. Menten, Die kinetik der invertinwirkung, Biochem. Z., 79 (1913), 333-369. $ \href{https://www.chem.uwec.edu/Chem352_F18/pages/readings/media/Michaelis_&_Menton_1913.pdf}{\mbox{[Web]}} $
  • [7] P. Mendes, H. Messiha, N. Malys and S. Hoops, Enzyme kinetics and computational modeling for systems biology, Methods Enzymol., 467(C) (2009), 583-599. $\href{https://doi.org/10.1016/S0076-6879(09)67022-1}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-71549133050&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=AUTH%28mendes%2C+AND+messiha%2C+AND+malys+AND+hoops%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000272400000023}{\mbox{[Web of Science]}} $
  • [8] D.D. Boehr, R. Nussinov and P.E. Wright, The role of dynamic conformational ensembles in biomolecular recognition, Nat. Chem. Biol., 5(11) (2009), 789-796. $ \href{https://doi.org/10.1038/nchembio.232}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-70350340728&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28The+role+of+dynamic+conformational+ensembles+in+biomolecular+recognition%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000270915000007}{\mbox{[Web of Science]}} $
  • [9] R.A. Azizyan, A.E. Gevorgyan, V.B. Arakelyan and E.S. Gevorgyan, Mathematical modeling of uncompetitive inhibition of bi-substrate enzymatic reactions, Int. J. Biol., Biomol., Agricultural, Food Biotech. Eng., 7 (2013), 974-977. $ \href{https://doi.org/10.5281/zenodo.1088248}{\mbox{[CrossRef]}} $
  • [10] A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, John Wiley & Sons, (2013).
  • [11] H.İ. Eğilmez, A.Y. Morozov, M.R.J. Clokie, J. Shan, A. Letarov and E.E. Galyov, Temperature-dependent virus lifecycle choices may reveal and predict facets of the biology of opportunistic pathogenic bacteria, Sci. Rep., 8(1) (2018), 9642. $ \href{https://doi.org/10.1038/s41598-018-27716-3}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85049229131&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Temperature-dependent+virus+lifecycle+choices+may+reveal+and+predict+facets+of+the+biology+of+opportunistic+pathogenic+bacteria%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000436078500005}{\mbox{[Web of Science]}} $
  • [12] L. Huang, A. Hwang and J. Phillips, Effect of temperature on microbial growth rate-mathematical analysis: the Arrhenius and Eyring-Polanyi connections, J. Food Sci., 76(8) (2011), E553–E560. $ \href{https://doi.org/10.1111/j.1750-3841.2011.02377.x}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-80054744518&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Effect+of+temperature+on+microbial+growth+rate--mathematical+analysis%3A+the+Arrhenius+and+Eyring--Polanyi+connections%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000296234300020}{\mbox{[Web of Science]}} $
  • [13] H.İ. Eğilmez, A.Y. Morozov and E.E. Galyov, Modelling the spatiotemporal complexity of interactions between pathogenic bacteria and a phage with a temperature-dependent life cycle switch, Sci. Rep., 11(1) (2021), 4382. $ \href{https://doi.org/10.1038/s41598-021-83773-1}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85101570421&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Modelling+the+spatiotemporal+complexity+of+interactions+between+pathogenic+bacteria+and+a+phage+with+a+temperature-dependent+life+cycle+switch%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000626731000005}{\mbox{[Web of Science]}} $
  • [14] J.A. Motyan, F. Toth and J. Tozser, Research applications of proteolytic enzymes in molecular biology, Biomolecules, 3(4) (2013), 923-942. $ \href{https://doi.org/10.3390/biom3040923}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000215147000009}{\mbox{[Web of Science]}} $
  • [15] T.D.H. Bugg, Introduction to Enzyme and Coenzyme Chemistry, John Wiley & Sons, (2012). $ \href{https://doi.org/10.1002/9781118348970}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84891585027&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Introduction+to+enzyme+and+coenzyme+chemistry%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} $
  • [16] R.M Daniel, M. Dines and H.H. Petach, The denaturation and degradation of stable enzymes at high temperatures, Biochem. J., 317(1) (1996), 1-11. $ \href{https://doi.org/10.1042/bj3170001}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0029977715&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28The+denaturation+and+degradation+of+stable+enzymes+at+high+temperatures%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1996UX07700001}{\mbox{[Web of Science]}} $
  • [17] M.E. Peterson, R.M. Daniel, M.J. Danson and R. Eisenthal, The dependence of enzyme activity on temperature: determination and validation of parameters, Biochem. J., 402(2) (2007), 331-337. $\href{https://doi.org/10.1042/BJ20061143}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33847757782&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28The+dependence+of+enzyme+activity+on+temperature%3A+determination+and+validation+of+parameters%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000244762500013}{\mbox{[Web of Science]}} $
  • [18] R.M. Daniel, M.J. Danson, R. Eisenthal, C.K. Lee and M.E. Peterson, New parameters controlling the effect of temperature on enzyme activity, Biochem. Soc. Trans., 35(6) (2007), 1543-1546. $\href{https://doi.org/10.1042/BST0351543}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-37749011278&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28New+parameters+controlling+the+effect+of+temperature+on+enzyme+activity%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000251875100038}{\mbox{[Web of Science]}} $
  • [19] R.M. Daniel, M.J. Danson, R. Eisenthal, C.K. Lee and M.E. Peterson, The effect of temperature on enzyme activity: new insights and their implications, Extremophiles, 12(1) (2008), 51-59. $\href{https://doi.org/10.1007/s00792-007-0089-7}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-38049031723&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28The+effect+of+temperature+on+enzyme+activity%3A+new+insights+and+their+implications%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000252191800008}{\mbox{[Web of Science]}} $
  • [20] M.L. Forsling and W.F. Widdas, The effect of temperature on the competitive inhibition of glucose transfer in human erythrocytes by phenolphthalein, phloretin and stilboestrol, Physiol. J., 194(2) (1968), 545-554. $\href{https://doi.org/10.1113/jphysiol.1968.sp008423}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0014253220&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28The+effect+of+temperature+on+the+competitive+inhibition+of+glucose+transfer+in+human+erythrocytes+by+phenolphthalein%2C+phloretin+and+stilboestrol%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} $
  • [21] J. Liu, W. Xia, A.Y. Abdullahi, F. Wu, Q. Ai, D. Feng and J. Zuo, Purification and partial characterization of an acidic a-amylase from a newly isolated bacillus subtilis ZJ-1 that may be applied to feed enzyme, Prep. Biochem. Biotechnol., 45(3) (2015), 259-267. $ \href{https://doi.org/10.1080/10826068.2014.907184}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84964307471&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE%28Purification+and+Partial+Characterization+of+an+Acidic+%24%5Calpha%24-Amylase+from+a+Newly+Isolated+Bacillus+subtilis+ZJ-1+that+may+be+Applied+to+Feed+Enzyme%29&sessionSearchId=58dcb06668016d1133b055642db4e6a2&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000342293800004}{\mbox{[Web of Science]}} $
  • [22] Ç. Çoban, Y. Temel and M. Çiftci, Purification, characterization of glutathion reductase enzyme from sheep splen tissue and investigation of the effects of some antibiotics on enzyme activity, Turkish J. Nat. Sci., 13(1) (2024), 62-69. $ \href{https://doi.org/10.46810/tdfd.1333609}{\mbox{[CrossRef]}} $
There are 22 citations in total.

Details

Primary Language English
Subjects Biological Mathematics, Dynamical Systems in Applications
Journal Section Articles
Authors

Halil İbrahim Eğilmez 0000-0001-6287-422X

Emrah Haspolat 0000-0002-1856-3181

Publication Date December 31, 2024
Submission Date July 16, 2024
Acceptance Date September 30, 2024
Published in Issue Year 2024

Cite

APA Eğilmez, H. İ., & Haspolat, E. (2024). Temperature-Dependent Parameters in Enzyme Kinetics: Impacts on Enzyme Denaturation. Fundamental Journal of Mathematics and Applications, 7(4), 226-235. https://doi.org/10.33401/fujma.1517334
AMA Eğilmez Hİ, Haspolat E. Temperature-Dependent Parameters in Enzyme Kinetics: Impacts on Enzyme Denaturation. Fundam. J. Math. Appl. December 2024;7(4):226-235. doi:10.33401/fujma.1517334
Chicago Eğilmez, Halil İbrahim, and Emrah Haspolat. “Temperature-Dependent Parameters in Enzyme Kinetics: Impacts on Enzyme Denaturation”. Fundamental Journal of Mathematics and Applications 7, no. 4 (December 2024): 226-35. https://doi.org/10.33401/fujma.1517334.
EndNote Eğilmez Hİ, Haspolat E (December 1, 2024) Temperature-Dependent Parameters in Enzyme Kinetics: Impacts on Enzyme Denaturation. Fundamental Journal of Mathematics and Applications 7 4 226–235.
IEEE H. İ. Eğilmez and E. Haspolat, “Temperature-Dependent Parameters in Enzyme Kinetics: Impacts on Enzyme Denaturation”, Fundam. J. Math. Appl., vol. 7, no. 4, pp. 226–235, 2024, doi: 10.33401/fujma.1517334.
ISNAD Eğilmez, Halil İbrahim - Haspolat, Emrah. “Temperature-Dependent Parameters in Enzyme Kinetics: Impacts on Enzyme Denaturation”. Fundamental Journal of Mathematics and Applications 7/4 (December 2024), 226-235. https://doi.org/10.33401/fujma.1517334.
JAMA Eğilmez Hİ, Haspolat E. Temperature-Dependent Parameters in Enzyme Kinetics: Impacts on Enzyme Denaturation. Fundam. J. Math. Appl. 2024;7:226–235.
MLA Eğilmez, Halil İbrahim and Emrah Haspolat. “Temperature-Dependent Parameters in Enzyme Kinetics: Impacts on Enzyme Denaturation”. Fundamental Journal of Mathematics and Applications, vol. 7, no. 4, 2024, pp. 226-35, doi:10.33401/fujma.1517334.
Vancouver Eğilmez Hİ, Haspolat E. Temperature-Dependent Parameters in Enzyme Kinetics: Impacts on Enzyme Denaturation. Fundam. J. Math. Appl. 2024;7(4):226-35.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a