Research Article
BibTex RIS Cite

Differential bubordinations and argument inequalities for certain multivalent functions defined by convolution structure

Year 2018, , 82 - 87, 30.06.2018
https://doi.org/10.33401/fujma.404408

Abstract

The main object of the present paper is to investigate certain interesting argument inequalities and differential subordinations properties of multivalent functions associated with a linear operator $D_{\lambda ,p}^{n}(f\ast g)(z)\ $defined by Hadamard product

References

  • [1] F. M. Al-Oboudi, On univalent function defined by a generalized Salagean operator, Internat. J. Math. Math. Sci., 27(2004),1429-1436.
  • [2] M. K. Aouf and A.O. Mostaafa, On a subclass of p-valent functions prestarlike functions, Comput. Math. Appl., (2008), no. 55, 851-861.
  • [3] M.K.Aouf and A.O.Mostafa, Sandwich theorems for analytic functions defined by convolution, Acta Univ. Apulensis, 21(2010), 7-20.
  • [4] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
  • [5] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (˙Istanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatog¸lu, Editors), pp. 241–250, TC İstanbul Kültür University Publications, Vol. 91, TC İstanbul Kültür University, İstanbul, Turkey, 2008.
  • [6] N. E.Cho, O. S. Kwon and H. M Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292(2004), 470-483.
  • [7] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276(2002), 432-445.
  • [8] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), no. 1, 1–13.
  • [9] M. Kamali and H. Orhan, On a subclass of certian starlike functions with negative coefficients, Bull. Korean Math. Soc. 41 (2004), no. 1, 53-71.
  • [10] Vinod Kumar and S. L. Shukla, Multivalent functions defined by Ruscheweyh derivatives, I and II, Indian J. Pure Appl. Math. 15(1984), no. 11, 1216-1227, 15(1984), no. 1, 1228-1238.
  • [11] S. S. Kumar, H. C. Taneja and V. Ravichandran, Classes multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformations, Kyungpook Math. J. (2006), no. 46, 97-109.
  • [12] J. L. Liu and K. I. Noor, Some properties of Noor integral operator, J. Natur. Geom. 21(2002), 81-90.
  • [13] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28(1981), 157-171.
  • [14] S. S. Miller and P. T. Mocanu, Differential Subordinations : Theory and Applications, Series on Monographs and Texbooks in Pure and Applied Mathematics, Vol.225, Marcel Dekker, New York and Basel, 2000.
  • [15] N. Nunokawa, On properties of non- caratheodory functions, Proc. Jpn Acad. Ser.A Math. Sci. 68(1992), 152-153.
  • [16] N. Nunokawa, S. Owa, H. Saitoh, A. Ikeda and N. Koike, Some results for strongly starlike functions, J. Math. Anal. Appl. 212(1997), 98-106.
  • [17] H. Orhan and H. Kiziltunc, A generalization on subfamily of p-valent functions with negative coefficients, Appl. Math. Comput., 155(2004), 521-530.
  • [18] J. Patel and A. K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl. 332(2007), 109-122.
  • [19] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon. 44(1996), 31-38.
  • [20] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013(1983), 362-372.
  • [21] C. Selvaraj and K. R. Karthikeyan, Differential subordination and superordination for certain subclasses of analytic functions, Far East J. Math. Sci. (FJMS), 29 (2008), no. 2, 419-430.
  • [22] H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I and II, J. Math. Anal. Appl. 171(1992), 1-13, 192(1995), 673-688.
  • [23] H. M. Srivastava, K. Suchithra, B. Adolf Stephen and S. Sivasubramanian, Inclusion and neighborhood properties of certian subclasses of multivalent functions of complex order, J. Ineq. Pure Appl. Math. 7(2006), no. 5, Art. 191, 1-8.
Year 2018, , 82 - 87, 30.06.2018
https://doi.org/10.33401/fujma.404408

Abstract

References

  • [1] F. M. Al-Oboudi, On univalent function defined by a generalized Salagean operator, Internat. J. Math. Math. Sci., 27(2004),1429-1436.
  • [2] M. K. Aouf and A.O. Mostaafa, On a subclass of p-valent functions prestarlike functions, Comput. Math. Appl., (2008), no. 55, 851-861.
  • [3] M.K.Aouf and A.O.Mostafa, Sandwich theorems for analytic functions defined by convolution, Acta Univ. Apulensis, 21(2010), 7-20.
  • [4] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
  • [5] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (˙Istanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatog¸lu, Editors), pp. 241–250, TC İstanbul Kültür University Publications, Vol. 91, TC İstanbul Kültür University, İstanbul, Turkey, 2008.
  • [6] N. E.Cho, O. S. Kwon and H. M Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292(2004), 470-483.
  • [7] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276(2002), 432-445.
  • [8] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), no. 1, 1–13.
  • [9] M. Kamali and H. Orhan, On a subclass of certian starlike functions with negative coefficients, Bull. Korean Math. Soc. 41 (2004), no. 1, 53-71.
  • [10] Vinod Kumar and S. L. Shukla, Multivalent functions defined by Ruscheweyh derivatives, I and II, Indian J. Pure Appl. Math. 15(1984), no. 11, 1216-1227, 15(1984), no. 1, 1228-1238.
  • [11] S. S. Kumar, H. C. Taneja and V. Ravichandran, Classes multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformations, Kyungpook Math. J. (2006), no. 46, 97-109.
  • [12] J. L. Liu and K. I. Noor, Some properties of Noor integral operator, J. Natur. Geom. 21(2002), 81-90.
  • [13] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28(1981), 157-171.
  • [14] S. S. Miller and P. T. Mocanu, Differential Subordinations : Theory and Applications, Series on Monographs and Texbooks in Pure and Applied Mathematics, Vol.225, Marcel Dekker, New York and Basel, 2000.
  • [15] N. Nunokawa, On properties of non- caratheodory functions, Proc. Jpn Acad. Ser.A Math. Sci. 68(1992), 152-153.
  • [16] N. Nunokawa, S. Owa, H. Saitoh, A. Ikeda and N. Koike, Some results for strongly starlike functions, J. Math. Anal. Appl. 212(1997), 98-106.
  • [17] H. Orhan and H. Kiziltunc, A generalization on subfamily of p-valent functions with negative coefficients, Appl. Math. Comput., 155(2004), 521-530.
  • [18] J. Patel and A. K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl. 332(2007), 109-122.
  • [19] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon. 44(1996), 31-38.
  • [20] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013(1983), 362-372.
  • [21] C. Selvaraj and K. R. Karthikeyan, Differential subordination and superordination for certain subclasses of analytic functions, Far East J. Math. Sci. (FJMS), 29 (2008), no. 2, 419-430.
  • [22] H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I and II, J. Math. Anal. Appl. 171(1992), 1-13, 192(1995), 673-688.
  • [23] H. M. Srivastava, K. Suchithra, B. Adolf Stephen and S. Sivasubramanian, Inclusion and neighborhood properties of certian subclasses of multivalent functions of complex order, J. Ineq. Pure Appl. Math. 7(2006), no. 5, Art. 191, 1-8.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mohamed Kamal Aouf This is me

Rabha El-ashwah This is me

Ekram Elsayed Ali

Publication Date June 30, 2018
Submission Date March 12, 2018
Acceptance Date June 5, 2018
Published in Issue Year 2018

Cite

APA Aouf, M. K., El-ashwah, R., & Ali, E. E. (2018). Differential bubordinations and argument inequalities for certain multivalent functions defined by convolution structure. Fundamental Journal of Mathematics and Applications, 1(1), 82-87. https://doi.org/10.33401/fujma.404408
AMA Aouf MK, El-ashwah R, Ali EE. Differential bubordinations and argument inequalities for certain multivalent functions defined by convolution structure. Fundam. J. Math. Appl. June 2018;1(1):82-87. doi:10.33401/fujma.404408
Chicago Aouf, Mohamed Kamal, Rabha El-ashwah, and Ekram Elsayed Ali. “Differential Bubordinations and Argument Inequalities for Certain Multivalent Functions Defined by Convolution Structure”. Fundamental Journal of Mathematics and Applications 1, no. 1 (June 2018): 82-87. https://doi.org/10.33401/fujma.404408.
EndNote Aouf MK, El-ashwah R, Ali EE (June 1, 2018) Differential bubordinations and argument inequalities for certain multivalent functions defined by convolution structure. Fundamental Journal of Mathematics and Applications 1 1 82–87.
IEEE M. K. Aouf, R. El-ashwah, and E. E. Ali, “Differential bubordinations and argument inequalities for certain multivalent functions defined by convolution structure”, Fundam. J. Math. Appl., vol. 1, no. 1, pp. 82–87, 2018, doi: 10.33401/fujma.404408.
ISNAD Aouf, Mohamed Kamal et al. “Differential Bubordinations and Argument Inequalities for Certain Multivalent Functions Defined by Convolution Structure”. Fundamental Journal of Mathematics and Applications 1/1 (June 2018), 82-87. https://doi.org/10.33401/fujma.404408.
JAMA Aouf MK, El-ashwah R, Ali EE. Differential bubordinations and argument inequalities for certain multivalent functions defined by convolution structure. Fundam. J. Math. Appl. 2018;1:82–87.
MLA Aouf, Mohamed Kamal et al. “Differential Bubordinations and Argument Inequalities for Certain Multivalent Functions Defined by Convolution Structure”. Fundamental Journal of Mathematics and Applications, vol. 1, no. 1, 2018, pp. 82-87, doi:10.33401/fujma.404408.
Vancouver Aouf MK, El-ashwah R, Ali EE. Differential bubordinations and argument inequalities for certain multivalent functions defined by convolution structure. Fundam. J. Math. Appl. 2018;1(1):82-7.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a